Skip to main content

Search

My Visit
Donate
Home Smithsonian Institution

Site Navigation

  • Visit
    • Museums and Zoo
    • Entry and Guidelines
    • Maps and Brochures
    • Dine and Shop
    • Accessibility
    • Visiting with Kids
    • Group Visits
      • Group Sales
  • What's On
    • Exhibitions
      • Current
      • Upcoming
      • Past
    • Online Events
    • All Events
    • IMAX & Planetarium
  • Explore
    • - Art & Design
    • - History & Culture
    • - Science & Nature
    • Collections
      • Open Access
    • Research Resources
      • Libraries
      • Archives
        • Smithsonian Institution Archives
        • Air and Space Museum
        • Anacostia Community Museum
        • American Art Museum
        • Archives of American Art
        • Archives of American Gardens
        • American History Museum
        • American Indian Museum
        • Asian Art Museum Archives
        • Eliot Elisofon Photographic Archives, African Art
        • Hirshhorn Archive
        • National Anthropological Archives
        • National Portrait Gallery
        • Ralph Rinzler Archives, Folklife
        • Libraries' Special Collections
    • Podcasts
    • Stories
  • Learn
    • For Caregivers
    • For Educators
      • Art & Design Resources
      • Science & Nature Resources
      • Social Studies & Civics Resources
      • Professional Development
      • Events for Educators
      • Field Trips
    • For Students
    • For Academics
    • For Lifelong Learners
  • Support Us
    • Become a Member
    • Renew Membership
    • Make a Gift
    • Volunteer
      • Smithsonian Call Center
      • Ambassador Program
      • Museum Information Desk
      • Docent Programs
      • Behind-the-Scenes
      • Digital Volunteers
      • Participatory Science
  • About
    • Our Organization
      • Board of Regents
        • Members
        • Committees
        • Reading Room
        • Bylaws, Policies and Procedures
        • Schedules and Agendas
        • Meeting Minutes
        • Actions
        • Webcasts
        • Contact
      • Museums and Zoo
      • Research Centers
      • Cultural Centers
      • Education Centers
      • General Counsel
        • Legal History
        • Internships
        • Records Requests
          • Reading Room
        • Tort Claim
        • Subpoenas & Testimonies
        • Events
      • Office of Human Resources
        • Employee Benefits
        • How to Apply
        • Job Opportunities
        • Job Seekers with Disabilities
        • Frequently Asked Questions
        • SI Civil Program
        • Contact Us
      • Office of Equal Opportunity
        • EEO Complaint Process
        • Individuals with Disabilities
        • Small Business Program
          • Doing Business with Us
          • Contracting Opportunities
          • Additional Resources
        • Special Emphasis Program
      • Sponsored Projects
        • Policies
          • Combating Trafficking in Persons
          • Animal Care and Use
          • Human Research
        • Reports
        • Internships
    • Our Leadership
    • Reports and Plans
      • Annual Reports
      • Metrics Dashboard
        • Dashboard Home
        • Virtual Smithsonian
        • Public Engagement
        • National Collections
        • Research
        • People & Operations
      • Strategic Plan
    • Newsdesk
      • News Releases
      • Media Contacts
      • Photos and Video
      • Media Kits
      • Fact Sheets
      • Visitor Stats
      • Secretary and Admin Bios
      • Filming Requests

The First Atomic-Beam Clock

National Museum of American History

Object Details

Massachusetts Institute of Technology
Description
The remarkable advances in electronics and microwave technology made during World War II stimulated the physicists who had worked on them to imagine new applications after the war for peacetime conditions. An outstanding example is the cesium-beam frequency standard, one of several types of "atomic clock" developed in the postwar years.
This is the experimental instrument built under the supervision of Jerrold Zacharias at the Massachusetts Institute of Technology in 1954. It showed that the atomic beam principle was feasible as a technique for extremely precise timekeeping, and paved the way immediately for a commercial version closely modeled on it.
The idea on which it relied had been known for two decades. The American physicist I. I. Rabi had applied it in the late 1930s to precise measurements of the magnetic moments and "spins" of nuclei of various kinds of atoms. Rabi knew that atoms behave as tiny magnets: a beam of them, traveling in a vacuum, can be deflected slightly by passing through a non-uniform magnetic field.
Furthermore, the strength of the atomic magnet, and its direction relative to that of the magnetic field, can be altered by microwaves whose frequency exactly matches (is in resonance with) a frequency characteristic of the atoms used in the experiment. Rabi's apparatus detected the change in deflection of the atomic beam when this resonance occurred.
In 1953, Zacharias, who as a graduate student had collaborated in Rabi's prewar experiments, started vigorous work on making such an atomic-beam apparatus function as a clock. By the next summer, he and his student R. D. Haun, assisted by visiting researcher J. G. Yates, were able to make the atomic vibrations of a cesium beam control a crystal oscillator, whose frequency then became as precise as that of the cesium atoms. This oscillator frequency in turn could be used for timekeeping far more precise than any previously possible.
The device shown is the atomic beam portion, the heart of the system, which was enclosed in a tall vacuum chamber when in use. Cesium atoms boiled out of an oven near the bottom and formed a beam, which passed a deflecting magnet, and then traversed a space in which it was subjected to the oscillating microwave field. It then passed a second deflecting magnet, which served to bring the atoms to a focus, as in Rabi's method, on a detector. This determined any deviation from resonance and sent a signal to circuits which adjusted the microwave frequency accordingly.
Zacharias's apparatus is noteworthy for being designed as a prototype for an instrument intended to be sold commercially. Unlike the traditional horizontal atomic beam apparatus, this one stood compactly vertical. It used permanent magnets rather than electromagnets; had convenient connections for vacuum pump, electronics, and microwaves; and had an oven designed to run for a long time without stopping. Zacharias persuaded the National Company, a manufacturer of radio equipment in nearby Malden, Mass., to take on the task of developing a commercial version under his supervision. After overcoming many difficulties, they began delivering the "Atomichron" in the autumn of 1956, mainly to military laboratories. Despite its high cost, $50,000, it sold well to those laboratories, and the Signal Corps declared that it "performed well beyond all expectations."
Reference: Paul Forman, "'Atomichron': The Atomic Clock from Concept to Commercial Product," Proceedings of the IEEE, Vol. 73, No. 7, July 1985, pp. 1811-1204.
Location
Currently not on view
Credit Line
Gift of Jerrold R. Zacharias
1955
ID Number
EM.319767
catalog number
319767
accession number
254080
Object Name
clock
Other Terms
clock; Atomic
Physical Description
steel (magnets material)
brass (endplate, casings material)
copper (wiring material)
nickel (effuser material)
cesium (working substance material)
Measurements
overall (without case): 76 in x 11 in x 12 in; 193.04 cm x 27.94 cm x 30.48 cm
Related Publication
Forman, Paul. 'Atomichron': The Atomic Clock from Concept to Commercial Product
See more items in
Medicine and Science: Modern Physics
Sputnik
Science & Mathematics
National Museum of American History
Record ID
nmah_850829
Metadata Usage (text)
CC0
GUID (Link to Original Record)
https://n2t.net/ark:/65665/ng49ca746b2-a5d6-704b-e053-15f76fa0b4fa

Related Content

  • Clocks

MIT cesium-beam frequency standard.
There are restrictions for re-using this image. For more information, visit the Smithsonian's Terms of Use page .
International media Interoperability Framework
IIIF provides researchers rich metadata and media viewing options for comparison of works across cultural heritage collections. Visit the IIIF page to learn more.
View manifest View in Mirador Viewer

Footer logo

Link to homepage

Footer navigation

  • Contact Us
  • Job Opportunities
  • Get Involved
  • Inspector General
  • Records Requests
  • Accessibility
  • EEO & Small Business
  • Shop Online
  • Host Your Event
  • Press Room
  • Privacy
  • Terms of Use

Social media links

  • Facebook
  • Instagram
  • YouTube
  • LinkedIn

Get the latest news from the Smithsonian

Sign up for Smithsonian e-news

Get the latest news from the Smithsonian

Email powered by BlackBaud (Privacy Policy, Terms of Use)
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Back to Top