
For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

SMITHSONIAN INSTITUTION

LEMELSON CENTER FOR THE STUDY OF INVENTION AND INNOVATION

Stephen (Steve) “Slug” Russell

Transcript of an interview

conducted by

Christopher Weaver

At

Computer History Museum

Mountain View, California, USA

on

8 January 2017

with subsequent additions and corrections

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

All uses of this manuscript are covered by an agreement between the Smithsonian Institution

and Stephen Russell, dated January 8, 2017.

For additional information about rights and reproductions, please contact:

Archives Center

National Museum of American History

Smithsonian Institution

MRC 601

P.O. Box 37012

Washington, D.C. 20013-7012

Phone: 202-633-3270

TDD: 202-357-1729

Email: archivescenter@si.edu

Web: http://americanhistory.si.edu/archives/rights-and-reproductions

Preferred Citation:

Stephen Russell, “Interview with Stephen ‘Slug’ Russell,” conducted by Christopher Weaver,

January 8, 2017, Video Game Pioneers Oral History Collection, Archives Center, National

Museum of American History, Smithsonian Institution, Washington, DC.

Acknowledgement:

The Smithsonian’s Lemelson Center for the Study of Invention and Innovation gratefully

acknowledges financial support from the Entertainment Software Association for this oral

history project.

mailto:archivescenter@si.edu
http://americanhistory.si.edu/archives/rights-and-reproductions

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Abstract

Stephen Russell begins the oral history by describing early life and education leading up to his

arrival at the Massachusetts institute of Technology. Russell then discusses development and

evolution of the computer game Spacewar! for the Digital Equipment Corporation PDP-1

computer and his career path from MIT to Harvard to Stanford University. As the informal

leader of this pioneering open source coding effort, Russell also highlights the roles of others in

the overall development of Spacewar! and the organizational and technical conditions which

allowed its development to occur. Additionally, Russell discusses his key influences for creating

a physics-based space game and his inclinations towards programming and engineering.

About the Interviewer

Christopher Weaver is a Distinguished Research Scholar at the Smithsonian’s Lemelson Center

for the Study of Invention and Innovation, Distinguished Professor of Computational Media at

Wesleyan University and Director of Interactive Simulation for MIT’s AIM Photonics

Academy. He has contributed to over twenty-five books and publications and holds patents in

telecommunications, software methods, device security, and 3D graphics. The former Director

of Technology Forecasting for ABC and Chief Engineer to the Subcommittee on

Communications for the US Congress, he also founded the video game company Bethesda

Softworks. Weaver is co-director of the Videogame Pioneers Initiative at the National Museum

of American History, recording oral histories and developing new applications for interactive

media and public education.

About the Editor

Justin S. Barber provided transcript audit-editing, emendations, and supplementary footnotes

to this oral history as part of his broader work into video game history and digital museology.

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Table of Contents

8 January 2017

Early influences, education, and experiences 1

MIT, the Model Railroad Club, and The Hingham Institute 10

The Digital Equipment Corporation PDP1 and developing Spacewar! 18

Spacewar!’s influence and popular misconceptions 23

Spacewar! collaborators and contributions, part 1 29

Defining and placing Spacewar! in the history of computer technology 36

The interactive, physical, and technical design of Spacewar! 39

Spacewar! collaborators and contributions, part 2 48

Concluding thoughts and perspectives 54

1

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Video Game Pioneers Oral History Collection

Interviewee: Stephen (Steve) “Slug” Russell

Interviewer: Christopher Weaver

Date: 8 January 2017

Location: Computer History Museum, Mountain View, California, USA

Weaver: Steve, would you please, for the record, tell us your name?

Russell: My name is Steve Russell. Actually, my name is Stephen Rundlett Russell.

Weaver: Thank you.

Russell: And if I want to be really pompous, I could be S. Rundlett Russell.

Weaver: Sure, you could. We like that.

Russell: [Laughs.] When I was in college at Dartmouth my freshman year, I worked on

the radio station, and the juniors and seniors on the radio station decided that I

was “Slug.” They would never tell me why, so it’s lost in the mists of history.

Weaver: Got it. You’re just identified that way, so I guess you have to live with it.

Russell: And when I escaped from college, my friends in Boston knew about it and they

started calling me Slug on occasion. When I was writing Spacewar!, I was as

much Slug as anybody else.

Weaver: Okay. So, given that this is an oral history, we want to start at the beginning and

end when we come to the finish, to misquote Alice. What were some aspects of

your early life history that you would normally talk about? In other words, where

did you grow up? What did you do? That sort of thing.

Russell: I grew up—well, I was born in Hartford, Connecticut. I lived there until I was

ready for high school in 1949. My folks moved to Mount Vernon, Washington,

where my grandfather had a farm, and I went to Mount Vernon High School. I

2

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

had actually visited them when I was about three. My uncle had a very tolerant

wife who let him fill the living room with model railroads. I’m told I was very

impressed. There are some pictures of me lying on the floor looking at the

equipment. The next Christmas, my uncle gave me a Lionel train. I liked that,

set it up, and over the years grew it larger and larger. I learned about basic

electronics mostly from the Lionel train.

In 1949, just before we moved out to Washington, I went to visit my uncle

George Washington Pierce, who was a professor at Harvard and had done a

great deal of work in ultrasonics and acoustics. He took me around to interesting

things on the campus, one of which was his attempt to build a clock, a

mechanical clock, that was as good as the electronic clocks that he had built.

One of the standard crystal circuits is [designated] the Pierce oscillator, and that

was George Washington Pierce. That was one of his inventions. Incidentally, he

did quite well with patents, and that was what sent me to Dartmouth.

Weaver: Talk about that a little more in the sense of what was your relationship with him

and how influential was he, because didn’t he also take you to see the Mark I?

Russell: Yes, and introduced me to Howard Aiken, who was very professorial and

happily demonstrated to me the error detection on Mark I. The output device

was several IBM [International Business Machines] electric typewriters, which

were set up with contacts so that when the key actually got to the paper, it closed

the contact and the electronics knew it had actually done the job. And he

demonstrated by putting his fingers in front of the type bars, and an alarm went

off and an operator sprang out of a chair, and Professor Aiken said, “It’s all

right.” [Laughs.]

Weaver: How old were you then?

Russell: Twelve.

Weaver: That was pretty impressive.

Russell: Yes. I was impressed. The Mark I was a very impressive machine because it was

all mechanical…electromechanical. The main power distribution was a propeller

shaft about this big around. [Russell demonstrates a diameter of about 6 inches

with his hands.] It went down the entire length of the machine, about 100 feet

or so. I much later learned that the parts that IBM used for the Mark I were

basically the parts they used for their high-performance tabulating machine, the

IBM 407, so many of the things were the same. One of the features of the 407,

and especially Mark I, was they had lots and lots and lots of cams with operating

3

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

contacts, demonstrates because part of the design method was to have very fast

relays that couldn’t carry much current and have the current controlled by big

cams so that the current only flowed when the relays weren’t changing. This led

to lots and lots of clocks. An impressive thing is look in the back of the 407

manual and you’ll see a page of timing chart for inputs and another page of

timing charts for outputs. It was a very strange style of relay design.

Weaver: You talked about when you were younger, getting model trains, so I’m assuming

they were the old HO model trains
1

.

Russell: Lionel O-Gauge.

Weaver: Yeah, O-Gauge. And that really started your interest in electronics?

Russell: Yeah, I got interested in making signals work and getting—Lionel had plenty of

accessories that provided some sort of action, so I had a working a semaphore

and a few other things.

Weaver: So that answers the logical question of why join the Model Railroad Club at MIT

[Massachusetts Institute of Technology].

Russell: Yeah. Well, my short-form story is my uncle gave me a Lionel train when I was

four, and I’ve never recovered. [Laughs.]

Weaver: Okay. Well, we’re going to get back into Model Railroad Club in a minute, but

I have a couple of other questions that I think are probably worth going into

prior to MIT. You touched on it a little bit, which was “why Dartmouth?”

Russell: Well, I got accepted by Dartmouth and MIT, and Dartmouth sounded better.

Later on, when I worked at MIT, I realized that if I had gone to MIT, I would

have flunked out in my freshman year. I got four years of good education at

Dartmouth. I only would have gotten one at MIT. [Laughs.]

Weaver: Got it. Okay. At Dartmouth, would it be fair to say that you found a mentor in

John McCarthy?

Russell: I sort of found him, but we only had a relatively brief contact at Dartmouth

because he was only teaching when I was around for about a year. He later on

went off to MIT. I was in the theatre as an extracurricular activity and I got a

student assistantship at the math department, and so I was the printer for the

1

 HO or H0 is a rail transport modelling scale using a 1:87 scale.

4

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

first edition of Kemeny and Kurtz Introduction to Finite Mathematics because

it was done on the department’s offset machine. McCarthy arranged to get

Marvin Minsky’s SNARC, and I attempted to restore it and get it working again

and got a couple of units working. SNARC stands for Stochastic Neural Analog

Computer.

So that was sort of my contact [with McCarthy] and the math department. John

thought I was pretty good at mechanical stuff for a mathematician. So, between

my junior and senior year, McCarthy had me down at MIT as a student assistant.

I got to use the very first version of Fortran [Formula Translation] and learned

about programming and took a machine-language programming course for the

704.
2

 John seemed to be fairly happy with that, and so he offered me a job at the

end of my senior year. It turned out I didn’t finish my senior thesis, so I didn’t

graduate, but I got four years of excellent education. John didn’t give a damn.

He just wanted me to come and program. [Laughs.] So, after my senior year, I

went down to Boston and worked for John for several years.

Weaver: Right at MIT?

Russell: Yeah. I was an employee of MIT. I was never a student and I never had to pay

them a cent. They paid me.

Weaver: You’re one of the few. [Laughs.]

Russell: Not at that time. There were a lot of people who didn’t graduate.

Weaver: Well, no, what I meant was, is these days, it’s rare that MIT just pays you.

Russell: Yeah. [Laughs.]

Weaver: One way or the other, they find a way to get you to pay them. But was it about

this time when you were asked to come down to MIT that McCarthy had you

start working to help on LISP [LISt Processor]?
3

Russell: Yes. In fact, when I got there, I did summer stock, so I showed up there in

September. At that point, John sort of had the idea of making something

algebraic similar to Fortran, only useful for experimenting with symbolic

representation. And over that fall, we went through making machine-language

2

 Fortran is a general-purpose programming language that served as a basis for many subsequent programing

languages, including BASIC. ("Fifty Years of BASIC". Time. 29 April 2014)
3

 LISP is the second oldest high-level programming language, first being Fortran, invented by John McCarthy at

the Massachusetts Institute of Technology (MIT) in 1958.

5

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

details, figuring out detailed representation on the 704. John went through

figuring out what would make a neat algebraic representation.

Weaver: What about the non-recursive issues that you were dealing with in LISP?

Russell: Well, the computers didn’t give a damn. You can write recursive algorithms in

Fortran or anything else. You just have to handle the recursion in a sort of

laborious, ugly way. And the idea of LISP was, well, you didn’t have to do that.

You could make the interpreter do that, or the compiler. And so, we went

through that.

At one point, John came up with a one-page—well, a half-page universal

expression which described how to interpret the language in the language. I

looked at that and I—this was, oh, in October or November—I looked at that and

understood it and said, “Oh!” I’d been hand-compiling all sorts of things like

that for two or three months, so I was a real expert. I said, “Oh, I can do that,”

and I sat down and hand-compiled the function and debugged it for probably

six weeks, maybe. By December, I had a working interpreter. We went charging

off from there.

It turned out that one of the first graduate students to try to use it, Jim Slagle,

who was blind but very smart started explaining in a seminar how he was going

to do formal integration. He revealed a serious flaw in the interpreter. I spent

January and February and maybe a little more rewriting the interpreter to

remove the problem so it worked the way we people with more or less a

mathematics background felt it should. Not everyone agreed with our judgment

at the time. Anyway, we spent at least a year chasing most of the bugs out of the

interpreter and putting in a few enhancements. I was working on that and various

other similar projects when the PDP-1 [Programmed Data Processor One]

arrived at MIT.

Weaver: Would you say that because of your involvement in LISP, from a practical

standpoint, that really was the early way that you got into AI?

Russell: Yeah, and it was also the way I learned a lot about computer programming.

Weaver: So just briefly, in terms of the lab at the time, because it was a very early period,

of course, in artificial intelligence, that meant that before [Marvin] Minsky was

Minsky, he was an associate professor in the lab?
4

4

 Marvin Minsky was a prominent early pioneer in computer artificial intelligence (A.I.) and was a co-founder of

MIT’s A.I. Laboratory.

6

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Yeah. Well, he had been working on various sorts of artificial intelligence since

he was, I think, an undergraduate at Harvard. The SNARC [Stochastic Neural

Analog Reinforcement Computer] was a neural network simulator of sorts that

tried to learn, so you’d give it something to do and it would do something. You’d

see what the output was and you’d either reward it or punish it. And that would

cause it to— [in either case] —adjust its parameters a little to make the good things

happen more often.

Weaver: Got it.

Russell: But with only six units, it wasn’t a very convincing demonstration.

Weaver: What about in terms of the lab itself, what about somebody like Jack Dennis?

I’m jumping a tiny bit.

Russell: Okay. Well, Jack Dennis was a different— [he was in] the laboratory down the

hall which had a TX-0 [Transistorized Experimental Computer Zero] and some

enthusiastic undergraduates. He also got the PDP-1. It was installed in his

laboratory and he herded us around it. Really, there were a lot of people who

contributed to the story behind Spacewar!, and the lack of any of them would

have made this story much different.

Weaver: Can you tell me a little bit more about—because you were talking about the lab

down the hall and the A.I. [Artificial Intelligence] lab— who were the people

involved? In other words, set the stage.

Russell: Well, for management, such as it was, the A.I. lab had Minsky and McCarthy,

and the A.I. lab at the time consisted of a room with a bunch of desks. Two of

us were full-time employees, me and Clint Mailing, along with some

undergraduates and graduate students.

Weaver: Do you remember the graduate students?

Russell: Well, let’s see. Bob Braden, and [David] Luckham, and Jim Slagle.

Weaver: And what were the various projects going on in those early days?

Russell: Well, Braden and Luckham were trying to figure out how to make a LISP

compiler. My LISP interpreter was very simple, but it was very slow.

7

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: For the sake of the people who are watching this who are not particularly

computer-literate, would you please explain what an interpreter is and what a

compiler is?

Russell: Oh, all right. [Laughs.] I guess I have to start with “how do you program a

computer?” Well, the computer, the 704, at least, takes binary numbers, and it

can interpret them either as instructions or as data and it doesn’t give a damn

which it is. It just picks up a number by its rules and does something with it. So,

very early, people just programmed as raw numbers. Very quickly, long before

I got there—well, years before I got there, they built assemblers, which allowed

you to use symbols for the operation codes and symbols for the data addresses.

It was still your job to keep them straight, but at least you could use symbolic

names rather than raw numbers.

 In 1957, IBM released the first version of Fortran for the 704, and this allowed

you to write things that looked like mathematical formulas and generated code

which did something close to what the mathematical formula suggested. The

original Fortran had very much rough edges. [Laughs.] Sometimes it would give

you a literate diagnostic, well, semi-literate, you know, in terms of Fortran and

the machine, but most of the time, or a lot of the time when you screwed up, it

would just stop. You’d go to the system programmers, who were responsible for

keeping Fortran more or less alive and getting it accessible, and you’d say, “What

does this mean? It says it stopped here.”

And they’d pick up a book, a listing book that was about this thick [Russell

demonstrates an approximate size of 4 to 8 inches with his hands] called the

Stop Book, and they would look up the location in the Stop Book and maybe

tell you what Fortran didn’t like and maybe not find it or maybe get nothing

useful and say, “There’s a bug in your program.”

And at that point, if it gave you a clue, you’d scowl at the program for quite a

while and see if you could figure out something was obviously wrong to fix. If

you couldn’t, you’d get involved in a very ugly process of dividing the program

into two, which made it guaranteed not work, and then pasting on enough stuff

so that you had a small program that was half the size of the original program.

And then you’d try both halves and maybe get another clue. Doing a binary

search through the space of undescribed bugs in Fortran was a pretty ugly

operation, which I participated in a couple of times.

When I wrote the LISP interpreter, Fortran was clearly unsuited for writing the

interpreter, so it was written in machine language, and we also anticipated that it

8

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

would be slow, since the 704 was slow. As a rule of thumb, which is still pretty

much true, if an interpreter picks up a symbol, or the text of the program picks

up a piece of it, figures out what it’s supposed to do and then does it, it saves the

result and picks up the next piece. The figuring out what to do and doing it, over

the years, what you could normally expect is about 60- to 100-to-1. [That means]

it takes 60 to 100 instructions, machine instructions, to do one thing that the

interpreter has to do. So, compared with the comparable program carefully

written in machine language or in assembler, interpreters tend to be 60 to 100

times slower, which is—when you’re dealing with a machine that takes five

microseconds to do anything—I forget; I don’t remember exactly what the cycle

time was, but it was microseconds—that’s really slow. What a compiler does is

does the same thing as the interpreter where it picks things up and figures out

what to do, but then it generates an assembler or a machine-language code to do

the thing as part of a program. [For example], You give the interpreter a pile of

code that’s complete and does something, and it goes “twiddle, twiddle, twiddle,”

figuring out what to do and doing it at 1/50
th

 to 200
th

 speed. What the compiler

does is take that much time or longer, but it only deals with each piece of the

program once and converts it into the equivalent machine language, and then

ties that into the rest of the thing. The output of a compiler is a complete

machine-language program that does what the input described, and that does

whatever it’s supposed to do – gets the same results as the interpreter – but it

does it 100 times faster. It’s really worthwhile to do that, to have a compiler.

Weaver: Would you say that being forced to use equipment in those days that was so

underpowered forced you as an early programmer to be as elegant as you could

possibly be?

Russell: In some cases, it wasn’t elegant, but it encouraged you to figure out things to do,

and, in fact, with the 704, in a number of cases, the program was sufficient—

you’d write the program and get it sort of working. While you were waiting for it

to run again, you’d figure out ways to speed it up.

Weaver: Right. Something that, once learned, is something you remember.

Russell: Yes. Actually [Laughs.], my first few jobs, I was a programmer, that the job title

was programmer or programmer analyst. My later jobs, my title was software

engineer. I did more engineering when I was a programmer than I did when I

was a software engineer because the machines were so slow, and it was important.

9

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Now, with more power than a Cray-1 in your pocket, you can do programming

for years before you ever have to wait for your program to finish.
5

 [Laughs.]

Weaver: Right. Well, we’ll get back to that, the point being, of course, that because you

didn’t have a Cray in your pocket …

Russell: Didn’t even have a Cray in sight.

Weaver: There wasn’t even a Cray. The 704 is downstairs [at MIT] was a museum piece.

I’m not sure it wasn’t a museum piece when it was out originally. Given its

lackluster speed, anybody who worked on those machines.

Russell: Well, but it was the fastest production machine at the time it was introduced,

and it was a really good scientific machine because it had floating-point that

worked. Now, another—Gene Amdahl was responsible for the 704 floating-

point, among other things.

Weaver: Now I want to go back for a minute, because you’re at MIT, and tell me a little

more about the Tech Model Railroad Club. You’ve already established that you

love trains.

Russell: Yeah.

Weaver: Give me some perspective about the club. Where was it. I’m not saying it’s there

anymore, but I’m just asking where it was?

Russell: The building has disappeared, finally.

Weaver: Right. What building was it?

Russell: Building 20.

Weaver: Building 20, which had a storied history in and of itself.

Russell: Yes. It was built at the beginning of World War II for the further development

of radar and for the MIT Radiation Laboratory, which was a major contributor

to radar. By 1958, development of radar had moved elsewhere, and it was sort

of the least desirable space at MIT. It accumulated all sorts of things. It still had

a machine shop and could do microwave stuff, but it wasn’t the main place where

5

 The Cray-1 was a supercomputer built in 1975 by Cray Research.

10

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

it happened. The Electronics Club and the Model Railroad Club had all settled

in Building 20.

Now, when I first got to MIT, I was kind of tied up in programming projects,

which I thought was very interesting. After we started just chasing bugs, I met

some of the undergraduates who were at the Research Laboratory for

Electronics. Alan Kotok was working on a chess program. I naturally went over

to see the Model Railroad Club and became a member and was a participant.

In fact, many aspects of model railroading are games. You have this rather

complicated machine to facilitate the games, but then when you run your

models, that’s sort of a game. You can do various sorts of simulations, like you

can make a timetable that is plausible for a railroad that’s built like the model.

You can also arrange to send freight cars to different destinations in a sort of

realistic way. That was one of the things that I got interested in there and worked

on. We would have operating sessions where we would have a dispatcher and a

bunch of engineers running trains. Sometimes we would use a timetable and

sometimes we’d attempt to move cars around in a realistic way. Since we were

dealing with something that’s 1/100
th

 or a 1/200
th

 the size of the smallest railroad,

it was sort of realistic, but it definitely wasn’t like real railroading.

Weaver: Who were some other members of the club who were both friends of yours and

influential, eventually, into what became later on to be Spacewar!?

Russell: Well, Pete Samson. Alan Kotok was—actually, he eventually became a computer

designer at DEC [Digital Equipment Corporation], and he worked very hard on

the PDP-6, PDP-10 and various others. John McNamara, who edited a book on

computer engineering with Gordon Bell and various others. Let’s see. Pete

Samson, Bob Saunders. There are lots of people.

John McNamara and Alan [Kotok] were both interested in telephones and

telephone communication. I picked up a bunch of stuff from them that

subsequently got more or less useful. In particular, we got into telephone

equipment design, because one of the MIT clubs had a rather fancy system to

connect the engineers to their trains that didn’t require the engineers to do much

stuff other than moving the trains and watching the signals, which is more or less

what a real engineer does. That was all built with relays from the Western

Electric Educational Gift Program.

The Model Railroad Club, long before I got there, had made good friends with

the guy who ran the electrical engineering stockroom. Every year, he got a catalog

from Western Electric of all the things that Western Electric had that they didn’t

11

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

need that they wanted to donate. He would order things from them. Well, so as

soon as the catalog came in, the Model Railroad Club signal experts would go

over and look at the catalog and say, “Oh, I could use this,” “We could use—,”

this, this, this, this, and Freddie would order the stuff. It would end up under the

Model Railroad Club layout, because the layout was more or less waist-height,

and so there was a fair amount of storage space available underneath. They had

little carts that you could go around on this cart with casters and not bump your

head, so it was fairly accessible. There was lots of stuff there and lots of relays

and lots of switches and that sort of stuff. One of the activities of the Model

Railroad Club was build new things using the relays. That led to a great deal of

study of how you build slightly obsolete telephone exchange out of relays, since

that was what was available.

Weaver: Would you say that it was also part of the beginning of the hacking culture?

Russell: Of the which?

Weaver: The hacking culture at MIT?

Russell: Oh, yes. I mean, at that time, “hack” was a verb indicating that you were playing

around with something which might or might not work or might just disappear

in smoke. [Laughs.]

Weaver: When did you first meet Wayne Wiitanen and Martin Graetz?

Russell: When I got to Boston, my cousin had been living in a co-op called Old Joe

Clark’s, which was basically a bunch of people. Five or ten people who got

together and rented a big old house and then lived in it in more or less

cooperative fashion. I moved into Old Joe Clark’s and there was a strong bias

toward folk singing and folk dancing.

Wayne and “Shag” [Martin Graetz] were associated with the Old Joe Clark

people, and so I met them very early on. Several years later, Wayne and Shag

and I got an apartment at 8 Hingham Street in Cambridge and lived there. It was

fairly exciting, because it was a cheaply built nineteenth century tenement, which

had not gotten better with age. At one point, the basement had been actually a

residence, but they had given up on that. It was kind of porous for winter winds

and also, it turned out, bedbugs. The two memorable features—it had many

memorable features—it was remarkable. [Laughs.] The center had sagged about

three or four inches more than the outside walls, so there was a definite slope to

all the floors. As I say, it was rather porous, and so every now—I think it

happened a couple times, anyway—the bedbugs would become obnoxious. The

12

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

guy who lived downstairs—we had the top two floors—would saturate all of our

part of the building with DDT and go off for a weekend, which dealt with the

bedbug infestation.

Anyway, it was during that time that the PDP-1 arrived and we started talking

about what you can do with it. I had seen Whirlwind and the bouncing ball

demonstration on Whirlwind, so I knew you could do animation no problem.
6

I also remembered enough of physics to know that doing animation—calculating

the equations of motion for something is very simple if you don’t have gravity.

What we thought about was, it would be nice to have a better demonstration.

We talked a fair amount about what you could do. We concluded that a

spaceship trainer, something that trained people who to fly a spaceship, would

be a good thing to do. Simple equations. You could make a nice animation on

the screen and you could probably teach people something.

Weaver: Was this discussion when you were still at MIT or were you now at Littauer at

Harvard?

Russell: I think it started at MIT. I’m not entirely clear on the details or the exact dates.

Weaver: The reason I’m asking is that at one time didn’t the three of you, besides

Hingham Street, share an office at Littauer?

Russell: I’m not sure we all shared an office at the same time, but we all worked for

Littauer at one point or another.

Weaver: When you talk about Hingham Street, is this where the famous Hingham

Institute came from?

Russell: Why, yes. As a matter of fact, one of the reasons for calling it the Hingham

Institute was we were impressed at Harvard’s corporate pomposity and we felt it

needed some parody.

Weaver: When you talked about the idea of a space simulator, go backwards for one

minute, because you and Shag and Wayne did other things together. My

understanding is, for instance, wasn’t Wayne getting you into doing things like

mountain climbing, so the three of you spent a lot of time—

6

 The Whirlwind was vacuum-tube computer developed by MIT at the request of the US Navy and constructed

in 1948.

13

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Oh, well, that was sort of something that a lot of people at Old Joe Clark’s did,

too, and, you know, it’s nice. We also had fun with winter mountaineering.

White Mountains get white, and you can go tramping around on the trails if you

have snowshoes.

Weaver: Did the same thing apply to doing things like going to see Toho films?

Russell: We didn’t do that together very much, but both Shag and I took advantage of

opportunities to see bad science fiction.

Weaver: And what about reading bad science fiction?

Russell: Oh, Shag and I both liked to do that. I don’t remember who introduced me to

E.E. Smith’s stuff, but I thought that was great. E.E. Smith was a science fiction

writer, and he had been writing science fiction since the twenties, I guess, and

was still—at least through the thirties. The characters were somewhat lacking in

depth, but the colors were very bright. The typical thing was—Smith wasn’t the

only one who did it; this was also common science fiction. But the idea was there

was this force of—you’d start out with a force of pure evil and some

representatives of the force of pure good. The force of pure evil would almost

defeat the source of pure good several times during the story, and finally the

sources of pure good would succeed in vanquishing the forces of pure evil. End

of book.

 Next book, it turns out the force of pure evil was not completely vanquished and

they’re back! It gradually was revealed that the force of pure evil from the

previous book was merely the incompetent minions of the real force of pure

evil, which was even more evil and even more powerful. The whole thing would

repeat, and you’d manage to get through two or three forces of pure evil that

were even more powerful before the end of the series.

 One of the vehicles that Smith was fond of using was the forces of pure good

would be flying across the galaxy or the universe trying to get away from the force

of pure evil, and in the process, they’d invent something new. Discover a whole

new field of physics and generate a new ultimate weapon which would vanquish

the forces of pure evil. You know, it was an exciting ride. That influenced what

we wanted to do with the spaceship trainer.

Weaver: When you go to the spaceship trainer, set a context for a minute just before you

get into it, because remember that you’re in your twenties, you’re living through

this. What was going on in the world? Why was this so kind of interesting?

14

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Well, in 1961 when the PDP-1 arrived in the fall. In January the Russians had

gotten a man into orbit, and in I think it was April, the U.S. was still playing

catch-up and managed to get a man into orbit. This was front-page news every

time something happened. One of the reasons to do a trainer was because it was

easy, and it would teach people something. We thought that was worthwhile and

it would also make a good demonstration. You know, how can you lose?

Weaver: Did this stuff spring from nothing or was this part and parcel of the Hingham

Institute Space Warfare Study Group?

Russell: The Hingham Institute Space Warfare Study Group was, in fact—this was the

main product of the Hingham Institute Space Warfare Study Group.

Weaver: And who came up with the idea?

Russell: I don’t know—I don’t remember who came up with the idea of the name, but we

all bought into it very quickly.

Weaver: Who came up with the idea of, for instance, an intergalactic space-fighting

simulator?

Russell: If you take the simulator out of it, it’s Doc Smith. [Laughs.]

Weaver: Were you guys giving rise to Doc Smith in the first—what was going to be a

computer demonstration?

Russell: Yeah. We certainly understood the attraction of Doc Smith’s stuff. Every once

in a while, we’d consider how you would arrange to discover a whole new field

of physics during the game, but we never did figure out anything close to how to

do that. But we did want to teach, and we very quickly realized that if we added

torpedoes and made it a two-person game, it would teach better because it was

more interesting. And then once we started playing with it, we started adding

things that would still fit.

Well, because of the PDP-1, which was even slower than the 704, and the

display, which was very limited by any standard, one of the main things was can

you execute all the code you have to execute in time to keep the display from

flickering horribly. The primitive feature of the display was you gave it an address

on the screen, and you said “Display,” or you executed a display instruction.

That gave you one spot. Fifty microseconds later, you could do it again. And,

unfortunately, programming a display—or fortunately—was that simple. But what

15

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

it meant was you had to arrange to come around twelve to twenty times a second

to do the display.

The first version of Spacewar! didn’t have any gravity because we didn’t

understand how to calculate it in time. Dan Edwards, who was also sometimes

an undergraduate and also an employee of the AI project, figured out a way to

speed up the code that I had written to make it run faster, which gave us enough

time to calculate the effect of gravity on the two spaceships. We still didn’t have

enough time to calculate the effect of gravity on all the torpedoes, so we decided

they were photon torpedoes not affected by gravity.

What Dan did was he wrote what apparently is the first example of a just-in-time

compiler, which is something that is used for modern display a lot. He looked

at the spaceship outline and generated exactly the right machine instructions to

draw the spaceship outline and keep the display running at full speed, which my

code did not do. That gave us enough time to calculate the effect of gravity. The

problem with gravity was the calculation takes a square root. Doing a square root

on the PDP-1 was even slower than just doing instructions. It also required some

multiplies and divides. The PDP-1 at MIT had only the cheap version of

multiply step and divide step, and so you needed to do eighteen of them to get

a full word-by-word multiply or dividing a word-by-word. It was much later that

my cousin was studying compilers and stuff and decided that was probably the

first instance of a just-in-time compiler.

Weaver: Which was intended to speed up the process.

Russell: Yeah.

Weaver: Let’s go back to the famed and storied Hingham Institute. So, we have three

friends you and Shag and Wayne, and you’re talking, as you said, about a

concept. The concept ends up being Spacewar!.

Russell: Yeah.

Weaver: All right. How did the concept of Spacewar! get out of Hingham Street?

Russell: [Laughs.] By bicycle.

Weaver: Okay. Go ahead.

Russell: [Laughs.] I had a car. Did I have a car? No, I didn’t have a car then, and so most

of the time, I got around by bicycle or MTA, now MTBA [Massachusetts Bay

16

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Transportation Authority]. One of the traditions, which was fairly strong at MIT

and certainly very strong at the Model Railroad Club and with Shag and Wayne

and myself, was you sort of looked at everything with a kind of engineering eye

and say, “Why is it this way? What would be better? Is there anything you can

improve anything in this?” And the answer was you could figure out things and

you typically would discuss them and critique them. You didn’t necessarily have

to do anything about it, but just the exercise of “Could this be improved?” was

an entertaining game and much participated. Discussing it was certainly easier

than doing it, and so we got lots of practice in doing that in all sorts of things.

Weaver: You were discussing it at the Model Railroad Club?

Russell: Yeah, and we were discussing it at the Model Railroad Club at the same time we

were discussing it at the Hingham Institute. Wayne and Shag didn’t have

anything particular to do with the Model Railroad Club. I was the only one there.

But, you know, we talked about it and people would speculate on what would

be good. In many cases, the various features, I don’t remember exactly who

suggested them originally, but the things that looked to be easy to do just sort of

got adopted into the discussion. Then we went on to look at other things that

were easy or hard to do.

When we actually got fairly late in the discussion, but before any code got

written, the idea percolated that we really needed to minimize the number of

sine and cosine calls we had to do. The sort of “Aha! Now I know how to do it”

for me was realizing that I could get by with just calculating an initial heading

vector for each spaceship. That’s two sets of calls, one for each spaceship. Then

by doing shifts and adds and subtracts, I could figure out the positions of all the

dots in the spaceship outline, and that was crucial in getting through displaying

two spaceships fast enough to not flicker.

Weaver: Before you got to that point, when you were going from the discussion to

concept, there were some other things going on in parallel. For instance, you

had a relatively new device, the PDP-1. Correct?

Russell: Yes.

Weaver: Who got the PDP-1 at MIT?

Russell: Jack Dennis. Jack Dennis was running the Research Laboratory for Electronics,

which had TX-0 in one room. When the PDP-1 arrived, they put the PDP-1 in

the next room. It wasn’t quite the next room, because there was a very small

room between them that had Flexowriters, which were the offline input device

17

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

for both TX-0 and the PDP-1. Although you had to use different Flexowriters

for each one because the coding schemes were different.

Actually, one of the things that I haven’t seen demonstrated and I’d like to

arrange a demonstration is a blow-by-blow account of how you actually generate

a program for the PDP-1 – the mechanics of getting a program into the PDP-1

– but it’s hard to find a working Flexowriter.

Weaver: But at the time, when the PDP-1 was there, why did, for instance, Professor

Dennis allow you to use the PDP-1?

Russell: The standard way of allocating the PDP-1 and TX-0 was to have a signup sheet

and some rules about who could sign up for what. The signup sheets typically

were half-hour or hour divisions. If you were important, like a professor, you

could sign up for maybe an hour a day. If you were less important, like a graduate

student, you could sign up for maybe an hour or three hours a week or

something like that.

Accounting for professor usage and graduate student usage was understood, but

for hangers-on or undergraduates that didn’t have any particular departmental

blessing, it wasn’t done. Professor Dennis decided or was convinced—I’m not

exactly sure which—to let unsponsored projects use unused time. If nobody

authorized signed up for the time, if you were an authorized but not supported

project, you could sign up for it. And one of the allowed projects was doing

something interesting. Peter Samson wanted to play music, somewhat

encouraged by Professor Dennis, and so he wrote a music-generating program

that would play tunes. That sort of gave us the first piece of the modern personal

computer which could play music. And then we generated Spacewar!, and so it

could play games. But, unlike the modern personal computer, it couldn’t do

them both at once.

Anyway, the idea that a hanger-on could get time on the machine encouraged

hanging around hoping that somebody didn’t show and also encouraged late-

night computer hacking, a habit which I have never recovered from. I do

remember that in the process of getting the release version of Spacewar! going,

Bob Saunders and I did a lot of testing. It seemed like we never decided that a

version was good enough to publish such as it was—that is, put on the console—

before midnight. And frequently it was sunrise when we decided we were done.

Weaver: So how long would you say it was before you went from the concept of Spacewar!

to actually committing yourself to programming Spacewar!?

18

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Well, I thought the concept was neat and interesting, but I was hoping someone

else would do the work. [Laughs.] I kind of wanted to do some PDP-1

programming, but I’d just as soon somebody else did the heavy lifting and I’d

just play. I had been talking up the idea, especially at the Model Railroad Club,

and getting the response of, “Yeah, that’s really a good idea. Yeah, yeah,

somebody ought to do that.”

But then I’d get the next step, which is, “Somebody who really understands the

idea really ought to do it. We need somebody who really understands the idea

ought to do it. Why don’t you do it?”

I looked for excuses, and one of them was I knew I needed sine and cosine

routines, but I didn’t know how to write them. I hadn’t taken numerical analysis

very seriously, and so I didn’t understand that. Alan Kotok, who snuck out to

Maynard, as it were, and picked up the library copies of the sine and cosine

routines from the users’ group. He then did a ceremonial presentation—I think

it was at the Model Railroad Club, but somewhere where there were lots of

bystanders—and said, “Okay, Russell, here’s the sine and cosine routine. Now

what’s your excuse?”

I was somewhat embarrassed, and so I went off and started thinking about it. I

figured out that I could get by with one call, one call per spaceship and figured

out the vector scheme for drawing the outlines. That turned out to be good

enough to be fast enough to keep the display going. At that point, I was done, I

thought. And then Dan Edwards went off with his own copy of the sources and

added the just-in-time compiler and that gave us the time to calculate the effect

of gravity.

And then after that, essentially the spring of 1962, we spent a fair amount of time

polishing it as a game. We did a lot of testing. In fact, we had to get the lab to

introduce a policy—didn’t take much effort, actually, but—the policy was that

playing Spacewar!, absolutely the lowest-priority thing that the computer could

do. Making a new version of Spacewar! was educational and therefore higher

priority than merely playing Spacewar! In other words, if they were playing

Spacewar!, I could kick them off.

Weaver: When you started doing this, how many people starting playing Spacewar!?

Russell: I don’t know. Some people started demonstrating it and playing it when I got the

first version going with no gravity—well, with torpedoes—and when we got the

final version going with—it had finite fuel, finite torpedoes, unreliable

19

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

hyperspace. It turned out hyperspace got added deliberately to improve the

learning aspect of the game. What we discovered was, first off, before

hyperspace, people would play the game and if one player had a little experience,

they could reliably kill off the other player every time. That meant the player

who didn’t understand, hadn’t had any experience, was at a severe disadvantage

and didn’t learn very fast. We started out by adding hyperspace to allow the

player, the beginner who noticed they were surrounded by torpedoes and didn’t

know what to do, could escape by pushing hyperspace and they would be taken

out of where they were and put somewhere random else after a while. Then we

discovered that people learned how to push hyperspace and then didn’t learn

anything more, so we added the finite resources and made hyperspace unreliable

so that a player could only use it about seven times or maybe less. It was random.

That gave us motivation to learn some more, and that worked quite well. It still

does. One of the things I say to people who play Spacewar! after they’ve played

a game or two is they now know more about navigating a spaceship than they did

before, so it’s still a learning tool, and people may not realize they’re learning

something, but they can’t escape it.

Weaver: Would you say that at this point where you had started off with one base

principle, a basic principle, other people changed it? By the way, before I forget,

you talked about Alan Kotok, but you also mentioned Pete Samson. What did

Samson do? Because remember that Edwards added gravity. What did Samson

add?

Russell: My first version had a random-number generator to generate stars in the

background, and Pete thought that was terribly unrealistic. He coded up a two-

page program that took a compressed version of the star chart, of a real star

chart, which he also encoded, and displayed it., A real star chart. It actually

moved the stars very slowly—took about two and a half hours, I believe, to go

through the entire seasons—and added that. He had actually just given me a

program called Expensive Planetarium, which you could run a standalone and

would display the stars. I spliced it into—I think I did; maybe he did—one of us

spliced it into Spacewar!. It’s typical Pete Samson code. It’s very compact and

very clever. [Laughs.] He frequently says that he knows an awful lot of ways to

not quite play music right.

Weaver: Right. Because he wrote that music program with four-part harmony – basically

creating oscillators, true digital oscillators, on the PDP-1.

20

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: And dealing with the initial complication that every time a voice has to change

from zero to one to make the note, that takes up extra time because changing

the note takes an extra instruction.

Weaver: And this is long before the Moog synthesizer.

Russell: Yes.

Weaver: Right. And, of course, the Moog synthesizer was analog, whereas what he was

writing was digital.
7

Russell: Yes. But the PDP-1 synthesizer was really lousy. It could just do a closed organ

pipe.

Weaver: True, but still digital.

Russell: Yes.

Weaver: The interesting thing is that it sounds as if you were surrounded by people who

were, I don’t know, maybe a little obsessive about respective things. For instance,

one person saying, “I don’t like the fact that you don’t have gravity,” another

person saying, “I don’t like the fact that it’s not a real star field.” Jack Dennis

basically getting the bureaucracy out of your way and giving you time on the

machine, so you could iterate. What would happen if any one of those people

simply had not been there?

Russell: Things would be different.

Weaver: As in?

Russell: I don’t know how.

Weaver: Maybe no Spacewar!?

Russell: Well, yeah, quite possibly. I don’t know if the Hingham Street bedbugs had any

contribution, but a lot of other things did.

Weaver: Well, when you were writing it—just for perspective—were you still at MIT or

were you, by this time, at Harvard?

7

 The Moog company, founded by Robert Moog, pioneered the commercial manufacture of modular voltage-

controlled analog synthesizer systems in the mid-1960s.

21

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: I don’t remember exactly. There were a bunch of things that happened in

relatively quick succession. I went to Harvard, and because I no longer was

working on the AI project, I didn’t have a deferment. I enlisted in the Army

Reserve and I had to go on six months of active duty sometime in 1961 and

1962, and so I was out of the picture for six months somewhere in there.

Then I got back, discovered that the management at Harvard had changed and

learned that I didn’t like the new management at all. John McCarthy decided to

go to Stanford, and so when he found that I was more or less available, he said,

“Why don’t you come to Stanford,” and I did. That happened in the summer

of 1962.

Weaver: When was Spacewar!, for all intents and purposes, finished?

Russell: Sometime in the spring of 1962.

Weaver: Spring would have been April of 1962?

Russell: I’m not sure it was that early.

Weaver: Wasn’t the MIT open house in May of 1962?

Russell: I think so. It definitely was ready in May. It was done in May, or we declared it

finished in May.

Weaver: Right. In other words, just before the open house it magically was finished.

Russell: Well, it was playable before then, so it could be that the version that went into

the users’ group was a little later than the MIT open house version, but it wasn’t

much different.

Weaver: And what was DEC’s position on this? I know that they had given Kotok the

sine and cosine routines for you in terms of the tables, but how did DEC feel

about what you were doing?

Russell: Well, they didn’t tell me. [Laughs.]

Weaver: Well, but they ended up including it in every new PDP.

22

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Well, presented with the evidence, they understood it was a good demo. Since

it didn’t cost them a cent, they used it. You must realize that this was before you

could copyright software. It was before you could patent software. All that

happened in the 1980s. It was very much a cooperative thing. There was no

particular advantage to deciding it was proprietary. You know, so what? DEC

was sponsoring a users’ group and the users’ group maintained the library, so it

was relatively little effort on DEC’s part. It was just a matter of you sent a

description and whatever you wanted, the source or the binary, to the users’

group library and they’d copy it for people who requested it.

Weaver: And wasn’t it true that virtually every one of the PDP-1s had requests for

Spacewar!?

Russell: It seems to be the case, but there was another thing that showed up a little later.

That was that the checkout people in Maynard and the field service guys in the

field agreed that they’d load Spacewar! just before a computer shipped. Now,

loading Spacewar!, the PDP-1 had core memory and the core memory is based

on a permanent magnet per bit. When the memory is working correctly, the data

stays in memory forever, at least as far as we can tell. We know it stays for at least

twenty years. The checkout people would load Spacewar!. The field service

people would unpack the machine and make sure that the shipment hadn’t done

anything horrible like knock out modules or stuff. If things looked good, they’d

plug it in, turn it on, and start Spacewar!. If Spacewar! ran, then they’d call the

customer over and say, “See, it works,” and teach the customer how to play

Spacewar!, which got them out of there in a few hours rather than a few weeks,

which was more the norm for installing a computer at the time. I’m sure a lot of

people got it that way, and for quite a while, it was the only, or the best,

demonstration program for the PDP-1 for people who weren’t computer

experts. Most people got a display and most people used it for demonstrating

how they were up with the latest in computer stuff.

Weaver: When you went to Stanford, did Spacewar! follow you?

Russell: Well, very quickly, we ordered a fancy PDP-1 for a timesharing system and we

got a not-so-fancy PDP-1 beforehand so we could start writing code. We

certainly had Spacewar! running on that, and a lot of people saw it and

remembered it. Then we eventually got the PDP-1 timesharing system going,

which was a first, which interfered with playing Spacewar! We had twelve displays

and a timesharing system, so we could run twelve users at the same time, not

with super good performance, but twelve at a time for two or three times the

price of a single machine wasn’t a bad deal. People kept using the timesharing

23

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

version. It had a display which was much faster than the Type 30. Eventually,

once the system was running, we got an airplane simulator going and discovered

that the pace of a 3D simulator is much, much different from the pace of

Spacewar!. It’s very slow because it’s very hard to understand where you are in

three-space relative to two-dimensional space right there in front of you.

Weaver: Not the least of which is the ongoing real-time calculation of vector graphics.

Russell: It turns out that wasn’t too bad.

Weaver: Really? On the old machines?

Russell: The simulator was for a light plane, but it was in a universe that consisted of

streetlights and horizon.

Weaver: Oh, okay. [Laughs.]

Russell: It was definitely dark.

Weaver: One more massive cheat, yes?

Russell: Yes.

Weaver: Okay.

Russell: Well, with a 50-microsecond—well, we were using the high-class display system,

so we had a lot faster display.

Weaver: By the time you got to Stanford, this was, what, 1962, 1963?

Russell: Yeah.

Weaver: Did you know at that time what kind of a cult hit Spacewar! had started

becoming?

Russell: I don’t think I realized it was a cult, but I do remember we’d been working on

something on the system until 10:00 or 11:00 at night and we decided it was time

to go over to the Oasis to have a hamburger. The Oasis was a bar that was in

Menlo Park, but was the closest bar to Stanford. We were sitting there talking

among ourselves and having our hamburger, and there was a group of students

playing the pinball machines, you know, regular old mechanical pinball

machines with pins and balls. [The bar] closed and I had to go over and pick up

24

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

something from Stanford, so I went back there. I looked in on the PDP-1 and

there was the same bunch of guys playing Spacewar!. I said, “Oh. It’s really a

pinball machine.” That was sort of the first time I recognized it, but I just thought

it was an entertaining game like a pinball machine.

Weaver: When did you actually realize the longevity of Spacewar! on the DEC machines?

Russell: Oh, I guess I was always sort of bemused at the fact that it lasted so long, and

then even more surprised when it turned out that almost everyone who wrote an

arcade game had seen Spacewar! and remembered it. Okay. I didn’t realize it

was memorable until then.

Weaver: Well, so would it be fair to say that as far as the DEC Corporation was

concerned, Spacewar! was their killer app?

Russell: No.

Weaver: No?

Russell: No. It took eight or ten years for computers and displays to get cheap enough to

use in an arcade game, and arcade games were never a major seller for DEC

computers.

Weaver: Understood.

Russell: Now, there were a few of them, but there weren’t very many.

Weaver: Right. But at $120,000 in 1960s money, you weren’t going to have a huge amount

of the public buying PDP-1s.

Russell: Well, but eight years later, it was only ten or twenty thousand dollars.

Weaver: But the primary buyers initially were universities.

Russell: Yeah. If they didn’t buy it—they never admitted that they were buying it for

Spacewar!, and they probably never were.

Weaver: But with Spacewar! largely being, prior to being publicly known, “public” being

the general public, wouldn’t it be fair to say that Spacewar! was known to

generations, plural “generations”, of college students?

25

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Yes. And there’s lots—I don’t know about lots, but there are certainly plenty of

examples of people seeing Spacewar!, remembering something about it,

discovering that they were stranded on a desert island with a different computer

which had a display, and writing Spacewar! for the different computer and

different display. Spacewar! itself is about two thousand lines of code, so if you

know what you’re doing, that’s not a horrible—that’s a reasonable spare-time

project for a couple of months. If you don’t know what you’re doing, it still looks

like a reasonable spare-time project.

One visitor at the [Computer History] museum was talking about Spacewar!, and

his contact with it was he was a graduate student in a physics lab and a bunch of

people in the lab had written various versions of Spacewar! They were all buggy,

but differently buggy. His only contact was to take all the versions and gather

them together and chase out most of the bugs, so it worked better. Spare-time

project.

I think another thing that showed up in the arcade games and a lot of the

subsequent development of games, in general, was the hardware kept changing

for various reasons. You got a different, faster computer and maybe a different,

faster display system or a display system with color. There was a strong

motivation to write a game that was at least as good as Spacewar! and worked on

the available hardware, and so there were lots and lots of variations. A lot of the

early hardware had various sprite display systems, and they aren’t very good for

doing Spacewar!.

Also, something I realized much later is Spacewar!, as tuned, is really dependent

on a relatively high-resolution display. If you have a different display with lower

resolution and attempt to do Spacewar!, it’s almost unplayable unless you do

major tinkers to all the parameters. There have been a number of unplayable

versions published.

Weaver: Well, it’s interesting, because if you think about it on a larger scale, do you feel

that Spacewar! as an educational entry into programming affected or influenced

a large number of people who might not otherwise have gone into

programming?

Russell: I don’t know how to evaluate that, but it certainly influenced a number of people.

I wouldn’t say it was necessarily large, although how you determine large—when

I started, there were only about a thousand programmers in the world. There

are considerably more now.

26

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: Right. I think that’s probably true.

Russell: Well, there are considerably more now on any commercial game or computer-

generated movie. Notice that’s one of the things I didn’t have to worry about:

artwork. Actually, I was surprised to realize recently that I feel kind of

proprietary about the original Spacewar! outlines. They’re just thirty or forty dots

per each, which isn’t a very big claim to fame. As soon as you get color and stuff,

then there’s a lot more artwork to do, and in spite of everything, doing artwork

is not much easier or simpler with computers than just doing it with a pen, pencil,

or brush.

Weaver: When you went with McCarthy from MIT to Stanford, was the uptake in the

interest in Spacewar! equivalent to what it had been at MIT?

Russell: I don’t know. At MIT, I had contact with the machine, because I was scrounging

time. I sort of knew how much of the time people were playing Spacewar!. At

Stanford, I didn’t have to worry about scrounging time, and I was working on

other things, so I wasn’t particularly aware of how much people were using it or

not.

Weaver: Did you have anything to do later on with the ports, say, for instance, of the PDP-

6?

Russell: No.

Weaver: Nobody consulted you?

Russell: No. Why should they?

Weaver: Well, you mentioned that there were no software patents, there was no

copyright—you never went into this with an intention to create a commercial

enterprise, did you?

Russell: We did think about it for about a week and we realized that the only possible

buyer would be DEC, and we knew that DEC was cheap, and since they didn’t

have to pay for it, they wouldn’t.

Weaver: So, it was, as you said, maybe a Hingham Institute concept, but never went

anywhere.

Russell: Yeah.

27

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: Now that you’re the stuff of urban legend [Russell Laughs.], what do you think

the biggest misconceptions are that have found their way into the public’s

perception or misperceptions of Spacewar!?

Russell: Well, the most prominent one for me is that I was a student at MIT, and I realize

that that legend is firmly in place. There’s nothing I can do to kill it. I don’t think

there’s anything anyone can do to kill it.

Weaver: Understood. Anything else?

Russell: Well, I guess I’ve been fairly successful at pointing out that Spacewar! was a

collaboration that depended on a lot of people. I haven’t worked particularly

hard at reminding people that there was a lot that went before. A lot of times,

people don’t understand that the Whirlwind project and the group of engineers

on the Whirlwind project are really crucial to starting that whole business,

because they worked on Memory Test Computer and Whirlwind and then they

worked on the SAGE system, which was bigger than any computer effort that

had been done before. They learned from that. One of the things they learned

was that working on a government project wasn’t necessarily something they

liked to do. And then working on TX-2 and TX-0. At DEC, there was plenty of

expertise on designing and debugging computers and a strong prejudice toward

interaction and a strong prejudice for cheap, or at least no more expensive than

absolutely necessary. It’s hard to tell the difference sometimes. Cheap made it

accessible, more accessible. And interactive, as long as IBM was stubborn about

keeping batch processing and not doing anything better, was a great way to sell

computers.

Weaver: You touched on two, I think, very important things, so let’s go backwards for a

second and address them. From the standpoint of the collaboration, this is the

opportunity to sort of cement the point that you’ve been trying to make, which

is as best you can remember, who would you consider the collaborators on

Spacewar!? Who were the people who were the criticals and then the people

who were the peripherals and the people with whom you felt added the finishing

touches?

Russell: Well, Spacewar! certainly wouldn’t have been as good without gravity, and that

is almost all Dan Edwards’ fault. It wouldn’t be quite as good without stars and

without explosions, and it turned out explosions were a major problem that we

felt. I tinkered with the explosions for a while and got thoroughly disgusted and

gave up. Shag tinkered with the explosions for a while and got them better. I

don’t remember who else—I think other people may have touched the

28

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

explosions. But anyway, getting the explosions to look satisfying was a real

problem. There were some very early unsatisfying versions, which I did. Bob

Saunders didn’t, at the time, contribute any code, I believe, but he and I ended

up spending up a lot of time playing each other to get the balance to a point that

we liked and to make sure that the residual bugs were chased out. In retrospect,

that turns out to have been surprisingly effective, because now I can boast that

there are no outstanding user reports of crashes. There are no user complaints

outstanding. It’s fifty years old, it’s still running, and support is still available.

[Laughs.] And I think it’s going to be hard for anyone else to make that claim.

The no bugs outstanding is an amazing achievement when I look back on it.

There are two things that made it possible, I think. One is, except for the places

where we needed to be very clever, it’s really dumb, straightforward code.

Almost everything is in one big loop and gets tested every display cycle. And

almost all the rest of the code is tested at least once per game. Everything got

tested, and that wasn’t necessarily a deliberate plan, but it is, in fact, true that

everything got tested very frequently, and so it’s hard for bugs to hide, it turns

out. Some of it was I had some experience, so—I and the other people all had

experience, so we wrote things in a way that we felt was less error-prone. It was

very conscious. But the main thing is we did a surprising amount of testing.

Much later, when I was briefly involved in a game startup—this was in the

eighties—the rule of thumb in the industry was that you needed something like

an hour of testing time for every hour of software engineering time that went into

writing the code. I don’t know whether it was really a good rule of thumb, but,

anyway, that was the rule. I thought about it, and for Spacewar! during the

development period, we had relatively few hours involved in engineering and we

had a lot of MIT undergraduates doing the testing, so I think we got a thousand

times more hours of testing than we had hours of engineering and we got very

good reporting because the only way they could get things tinkered to be better

was to be on me, so I heard about all the problems with testing. The combination

of really thorough testing compared with the engineering time, some experience

and a relatively good test environment is the reason that there are no outstanding

bugs. All the modern stuff is much more complicated, which is why the—

Weaver: Did Alan Kotok do something that was contributory other than or in addition to

shaming you by basically bringing you the DEC cosine routine?

Russell: Oh, I’m sure he contributed in the conversations about what to do and that sort

of stuff, but, no, he didn’t have any direct involvement. I don’t believe he wrote

any code in Spacewar!.

29

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: And what about Steve Piner?

Russell: I think he may have been involved in some of the explosion polishing, but I’m

not sure. His main contribution was the Expensive Typewriter. There were a lot

of expensive programs.

Weaver: Why don’t you explain that?

Russell: I guess the first expensive program was Expensive Desk Calculator. What

happened was one of the undergraduates was taking a numerical analysis course,

was also in the Research Laboratory for Electronics. He was taking a numerical

analysis course, and the calculators that they had to use for the numerical analysis

course were on the opposite side of campus. So, he wrote a program that he

called Expensive Desk Calculator, which did what a desk calculator did on the

PDP-1. The reason it was expensive was a desk calculator was only $5,000 and

a PDP-1 was $120,000. So, there was Expensive Desk Calculator.

Then Steve Piner wrote a program that allowed you to edit paper tape on the

PDP-1 so you didn’t have to use the Flexowriter. This was great because if you

weren’t changing anything, copying tape was very fast on the PDP-1 and was very

slow on the Flexowriter. Then Pete Samson wrote Expensive Planetarium.

There the claim of expensive was not clear, because a real planetarium projector

was pretty expensive at the time, so it was up in the PDP-1 range. Anyway, it got

called Expensive Planetarium. I don’t remember what other expensive programs

there were, but basically the idea was something that does something relatively

prosaic that is done on a cheap machine, and here with a $120,000 PDP-1 you

can reproduce the same effect as the cheap machine.

Weaver: And you said that Peter Samson put in the star field, but do you remember

whether or not he gave you the star field, if he gave you EP, you know, the

Expensive Planetarium, or did he actually implement some of that code too?

Russell: No, he gave me the full package, that is, Expensive Planetarium with the code.

All I did was splice in the code. I’m not sure even I did it. He might have done

it. But the code for the standalone version of the program just got spliced into

the main loop of the—no, he must have done it, because there’s some cleverness.

[Laughs.] Well, the standalone version you just run, and it has the machine all

to itself and does its own timing. In the case of the Spacewar! version, each one

of the very dim stars get displayed in alternate loops, so the dim stars twinkle

because they aren’t getting displayed fast enough.

30

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: Right. Okay, although you also took advantage, at the time, of the screen’s

persistence.

Russell: Yes.

Weaver: That’s not inconsequential from the standpoint of one more little trick that you

were able to utilize.

Russell: That was not a conscious trick. We only realized how much that saved us when

we tried to do it on displays that didn’t have the dual phosphor [screen]. In fact,

a number of features of the display we didn’t realize mattered because that was

all that was available at the time. Much later when we attempted to reproduce it

on a different display or watch someone else’s effort to use a different display, it

became clear that the resolution and appearance of the display were really

important to the experience.

Weaver: Looking back—it’s easy to try and look backwards, isn’t it—what did you think

you were doing at the time?

Russell: Having fun.

Weaver: And what did you actually do?

Russell: Have fun. And incidentally, we learned a lot, and some of what we learned was

totally unconscious and we didn’t realize we’d learned a damn thing.

Weaver: Isn’t that the best kind of learning?

Russell: One of the things that I think the industry is not very conscious of is how much

we’ve learned and how subtle it is. One of my last real jobs was a contractor at

Intel, and I was dealing with tinkering a big project that had 9,500 source files in

it. It turned out, given a herd of Intel machines, I could rebuild the entire project

and run the basic test suite in about three hours.

Weaver: Impressive.

Russell: The system was usable, but buggy, not super buggy, but buggy. That’s

spectacularly larger than two thousand lines of machine language. The fact that

it’s tolerable and usable is not something I would ever have imagined back in the

1960s. I’m not sure anyone can explain exactly how that happened. I know

various pieces of it, like better style of programming and better compiler

diagnostics, no more stop books. Some of it is style, like one of the few lessons

31

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

of academic computer science that got adopted fairly easily was don’t use “Go

To”.
8

 A lot of other pieces haven’t been adopted. Also object-oriented

programming in some disguise, which helps with testability a lot. But no single

thing explains why a bug hidden somewhere in 9,500 source files is something

that’s only a little more work than debugging a new version of Spacewar! and

produces satisfactory results.

Weaver: Since 1962, other than the cult phenomenon that Spacewar! has obviously

become, and, of course, you along with it, other than the kudos and being a

docent at CHM [Computer History Museum], have you ever gotten a dollar for

Spacewar!?

Russell: No, I never got a dollar for Spacewar!. I got some pretty good steaks from lawyers

who were dealing with litigation on computer game patents. Atari versus

Magnavox was [one of them.]

Weaver: Right. In other words, as a professional witness?

Russell: Yes.

Weaver: Got it.

Russell: Well, actually, no—yeah, I was a professional witness. I was deposed as a

professional witness, but most of the time—I hate reading patents! [Laughs.]

Weaver: Well, and, of course, until recently, you couldn’t file a software patent anyway,

right?

Russell: Well, relatively recently.

Weaver: Right. Looking back now, you’ve had a number of years, almost fifty years, to

look back at sort of what you got into by three twenty-something-year-olds

reading Lensman novels and talking about what intergalactic space war might be.

What do you think about the industry that largely has been spawned from what

you did?

Russell: [Laughs.] I’m very doubtful that I would enjoy participating in generating a

modern game. It’s an awfully big mob. I still haven’t seen anyone deal with a

usable version of discovering a whole new field of physics while escaping across

8

 “goto” or Go To is a file command found in many programming languages.

32

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

the galaxy. You can shoot at lots of things and you can have some really neat

monsters to attempt to slay and that sort of stuff, but no invention.

Weaver: That’s interesting.

Russell: There’s actually an approach to that in Clash of Clans, which is one of the games

that I enjoy playing now, and that is they have a laboratory [in the game]. If you

spend money in the laboratory, they will discover ways to make your characters

better. But it’s still not inventing a whole new field of physics.

Weaver: Well, don’t you have Doc to thank for that?

Russell: Yeah. Well, I have lots of people to thank for it, you know.

Weaver: What games are you playing now?

Russell: Clash of Clans, with a peculiar restraint because Clash of Clans works on a cell

phone, and you can buy various things to make things better, but there’s sort of

a basic level that doesn’t cost you anything. For some stupid reason or other, on

the cell phone games, I’ve always taken the attitude that “I ain’t gonna pay for it

if it’s free.” I put up with the slow pace and every now and then think about

spending ninety-nine cents for an enhancement, but, no, that’s my rule and I’m

sticking with it. And Klondike.

Weaver: And what does Klondike have that’s so attractive?

Russell: Exactly the same stuff that made it attractive as a card game. It requires a little

thought and a little memory work, and the pace is pretty fast.

Weaver: Is there anything you would have changed if you had the benefit of hindsight?

Russell: I haven’t thought of that. I haven’t really studied that. I would have liked to have

figured out a way to invent new miraculous fields of physics while fleeing across

the galaxy, but I don’t think I will.

Weaver: For those people who are interested in getting into programming but it’s a

concept to them, and knowing what you know now about the relative simplicity

of high-level languages compared to working at the machine level, what kind of

advice would you give to someone who’s interested starting out?

Russell: Do stuff. There are a number of things to do. One is there are an awful lot of

bad interfaces available. A few years ago, I was investigating, or actually my

33

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

cousin was investigating bicycle lights. Some of them are very clever, but some

of them have truly lousy interfaces—well, a lot of them have truly lousy interfaces

that are complicated to understand and complicated to operate. One depended

on the delay, how long you held the button down, but it was done in terms of

seconds and not in terms of human perception. Doing the difference between a

ten-second delay and a twelve-second delay, nobody’s going to do that, or at least

not very successfully. They’re going to be very peeved.

Another thing, there’s one thing missing on my toaster oven. You can set

different shades of toast, which is basically just time, but it won’t tell you how

long until your toast is done. It just, “Don’t worry. You’ll get it when I—I’ll tell

you when I’m done,” but it doesn’t give you a clue as to whether it’s going to be

in a minute or five. Also, when you discover that it’s not done enough and you’d

like it a little more, it doesn’t have anything to say, “Give me another 10 percent.”

You have to figure out what 10 percent or 20 percent is and dial it in again. Now,

given the computer they have in there, they should be able to do that with very

little extra code, but they didn’t.

Weaver: So, it’s a user interface problem.

Russell: Yeah. Writing a user interface for either of those situations is a simple

programming exercise, but you’ll learn something.

Weaver: Do you think that Spacewar! was arguably one of the, if not the first—and that

would be highly arguable—let’s say it was one of the earliest human-machine

interactions that was approachable or touchable by a relatively large number of

people?

Russell: I think you can try as an exercise to build a definition, but it’s not the first

computer game, it’s not the first computer game that was displayed on a display,

it’s not the first two-person computer game. Attempting to make it a first requires

an awful lot of fine print, and there are much better things to do.

Weaver: Well, I guess my point is part of Douglas’ thesis at Oxford only ran on two

computers in the world at the time, and that was part of a Ph.D. thesis and it was

nothing like Spacewar!. And Higginbotham’s, of course, was done for

Brookhaven National Laboratory. That’s kind of where I’m coming from, which

is yours wasn’t military. Yours was not strictly a theoretical part of a Ph.D. thesis.

Yours was a game. It was a game that was approachable by people on an

admittedly expensive machine, but it was playable by a large number of people.

34

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

From that standpoint, wasn’t yours the most approachable video game on a

computer of the time?

Russell: Well, I have a problem with “video game,” but that—

Weaver: Okay. You use your language. You know where I’m going.

Russell: Yeah. What you’re saying is true, but I think the thing to do is say it was a very

inspiring early game. We know now that a lot of people saw it. We know now

that they remembered it. We know now that some of them tried to do something

better. The other thing is I can’t defend it because there are no facts around one

way or the other, as far as I know, but I think it was the first computer game

where people wanted to come back and play it again, and that’s certainly true of

Spacewar!.

Weaver: Given that you sit in a very unique position, how would you describe Spacewar!?

Russell: Very influential early computer game.

Weaver: Fair point.

Russell: Or the grandfather or maybe great-grandfather of the modern computer game.

Weaver: And maybe the modern computer industry.

Russell: No.

Weaver: No? Computer game industry.

Russell: The computer game industry. Of course, you could argue as to whether the

computer game industry isn’t the main part of the computer industry now.

Weaver: True. But the computer industry, as evidenced by the 704, is not something that

influenced the computer game—

Russell: No.

Weaver: —whereas I think Spacewar! would be.

Russell: Yeah.

Weaver: With that in mind, you have a phrase of how you’d describe it relative to the

industry?

35

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: I’ll stick with “very influential.”

Weaver: Okay. All right. Steve, as best you can recollect, when did you know you really

had something?

Russell: [Laughs.] I was satisfied with the original version with no gravity in the sense that

I had gotten it—I had done what we had talked about. It was all working and it

wasn’t too buggy. That was an achievement. That was a milestone. That was

okay. Then when the other contributions happened, and Bob Saunders and I

spent some time testing thoroughly, that was another milestone, and that

[iteration] was obviously better. That’s what we’re exhibiting now [at the

Computer History Museum].

Weaver: Okay. Was it calm?

Russell: I wasn’t expecting to be inspiring to other people, particularly. It was just that

was a project that reached a stopping point.

Weaver: Was there yelling and screaming involved?

Russell: No.

Weaver: No? Even when one guy downed another guy and he went down in flames, there

was no fist- pumping?

Russell: Oh, yeah, there was that but not relative to the software. That was just part of the

game. Oh, yeah. That was one of the reasons that the game is fun, is because it’s

two-person and there’s plenty of chatter between the players. One of the things

that we show in the software exhibit here is—especially for World of Warcraft

and similar things—having a back channel or side channel to talk to your friends

and enemies is very important. It makes it social and interesting, and that, of

course, is something that board games do.

Weaver: I know that tomorrow we’re going to do an actual demo [of Spacewar!], and I

know that you have sort of one of the standard spiels of the way that you explain

it to the audience downstairs, but because we’re in a protected environment here

and we have everything set up, I want to ask something that you might normally

address downstairs, but here. Would you explain a PDP-1? Explain a little bit

of the history of the PDP-1 and what the PDP-1 is and why it was so important.

In other words, what made it the right tool for you to do Spacewar! on?

36

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Well, the first and foremost thing was it was handy and available. The second

thing was it was good enough. In some ways, its restrictions made it possible to

get Spacewar! done, because with a modern computer, simply bringing up the

display is more work than all of Spacewar!. So, since it was slow, there weren’t

too many bells and whistles that could be put on, and you really had to work to

get the bells and whistles on. And since the display was limited, you had to have

everybody in the same room. Those things all contributed to making Spacewar!

relatively simple and relatively easy to do.

Weaver: Well, you bring up an interesting point with what you just said, because when

you talk about the testing, the innovations, the iterations, etc., you brought up

the point about you had two people in the same room. Obviously, you had the

chatter between the two of you. But when you first had Spacewar! come out, you

didn’t have your controllers, did you?

Russell: Well, they were always—the first version ran for the console switches.
9

Weaver: Exactly.

Russell: So, yeah, but you still had to be in the same room, and, in fact, you had to be

right next to each other.

Weaver: Well, but the person who was closer to the display had a slight advantage visually.

Russell: I don’t think that ever turned out—

Weaver: Somebody’s on the left, somebody’s on the right.

Russell: Yeah, I don’t think that ever turned out to be recognized as significant.

Weaver: So why did you build—not that you built the controller. And, by the way, who

built the controller, from what parts and where, and why was it built?

Russell: Oh, well, as previously mentioned, there was a big stash of telephone equipment

underneath the Model Railroad Club layout, and so a bunch of switches were

tested by hand to see if they felt suitable, and then the control box was built. I

don’t know for sure who built the controllers. There were actually a couple of

iterations. One which I remember and no one else does was a little four-button

box that Western Electric built for buzzers for telephones, for office telephones

9

 In a follow up query, Steve Russell describes the original control interface as “the 18 ‘test word’ switches on the

front panel.” (Email dated Aug 22, 2019)

37

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

where the receptionist has a buzzer to tell who to pick up. That one failed fairly

quickly because it was designed to be pushed by a receptionist a few times an

hour, whereas playing Spacewar!, they fatigued and fell apart and became useless

pretty quickly. That was the point at which the first control box got built. Nobody

remembers the push-buttons, so I suspect they failed fairly early—or no one else

remembers them. It was some combination of people from the Model Railroad

Club, but I don’t remember who.

Weaver: And the reason that it was built, as I remember, was because it was not as

playable or not as enjoyable from the console because you didn’t have the

specialized controls. The mother of invention here was giving you the little

joysticks you were talking about and a button.

Russell: Actually, the main motivation was physical. To play from the console—the

buttons were out here—you pretty much had to rest your elbows on the table.

After half an hour, that got pretty painful. The other problem was that you also

ended up spending a half an hour or more looking to the side because you were

facing the console, but the display was over there. You had to turn your head

and keep it turned for a long time, and that was painful too. Something that

allowed you to sit directly in front of the display and sit was much less painful

than playing from the console. That was part of the motivation for having the

special controllers.

Another feature with possibly some unconscious foresight from DEC was that

the basic computer came with enough spare sections and a custom wiring panel

for input/output gear. By merely adding wires, you could add the eight buttons

as input, any eight buttons you wanted. You provide them. So that made it very

easy, you know, a sort of two-day project, maybe, to add the buttons. Essentially

every installation ended up doing that for some reason. I think they frequently

justified it as interactive input.

Weaver: Well, even today, especially for two-player games in front of a screen, it’s not all

that different, is it?

Russell: Yeah.

Weaver: Would you explain—I mean, we’ve been talking about it a lot, but we really have

not started from ground zero. What is Spacewar! and how does it work?

Russell: Well, I’m sorry, but I’ve got to give you the straight-man answer. It works pretty

well. [Laughs.]

38

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: Okay. Now the docent’s answer.

Russell: Well, the structure of the program is two loops.

Weaver: No, I’m talking about for the general public; in other words, what you would do

downstairs to explain—

Russell: Okay. You have this program. If it was on your cell phone, we now call it an app.

You load it into the memory of the computer and start it. It displays two

spaceships in sort of standard starting positions, stars in the background. They

happen to be real stars, a real star map, but you don’t have to worry about that.

There’s a star in the center, and the star in the center has gravity and gradually

pulls the spaceships in toward the center. The goal is to maneuver the spaceship

so it doesn’t fall into the star and use the torpedoes—you can maneuver the

spaceship by turning it and firing a rocket, and the rocket accelerates the

spaceship in the direction it’s pointed. That’s the way most rockets currently

work. You then can turn, and there’s a torpedo tube in the very front of your

spaceship, so you can fire a torpedo out the nose of the spaceship. The

torpedoes will blow up other torpedoes. They’ll blow up spaceships. You can

even blow yourself up if you work at it hard, but it takes some work.

The goal is to destroy your opponent before he destroys you. You can run out

of torpedoes, you can run out of fuel, you can use up your hyperspace jumps.

The hyperspace generators were rushed into the field and they’re not very

reliable. No ship has been known to survive more than seven jumps into

hyperspace. They just blow up and that’s that. When the game reaches a

conclusion, like nobody has any torpedoes left or only one person is left

standing, then it restarts. As we normally set it up, after there’s a conclusive

winner, the game stops, displays the scores of both players. After a while, it waits

for somebody to push a button to restart. That’s what the user sees. You can

play it that way for hours and hours.

As to what’s going on, what you load into the computer is a small, by today’s

standards, program that loops through all of the colliding objects—that’s all the

torpedoes and all the spaceships—and it looks to see whether any of them are

close enough to each other to explode. If they are, it causes both of them to turn

into explosions and that’s that. At the end of the loop, it looks to see whether

anything else can happen, and if it can’t, then it goes and restarts, and keeps

score. Inside that loop, for each colliding object, it goes through a display routine

which looks to see if there’s any change in the status and updates the status and

displays the object. Now, in the case of a torpedo, it’s just a dot, so that takes no

39

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

effort. In the case of a spaceship, it has to look at the controls for that spaceship

and adjust its position if it’s turning or accelerating. Then it takes its current

velocity and updates its position. Displaying the spaceships is complicated, and

that is one of the main time consumers. Then it goes on and calculates the next

spaceship.

It turns out that the program is an example of what we now call an object

orientation, because there’s a common code for each spaceship, but there’s

separate data for each spaceship. The position and the acceleration and which

buttons to use and the outline is peculiar to the individual spaceship, but it’s the

same code manipulating all these things for both spaceships. There’s only one

copy of that code. Similarly, for the torpedoes, there’s a subset of that code that

gets used only by torpedoes. The result is that the colliding objects—and my

comment in the original code calls them colliding objects—are polymorphic

objects. There’s the display moving object, same code for all torpedoes and

spaceships, same code for all spaceships, but different outlines for the

spaceships. So, I was using a very advanced method of programming which

seemed obvious to me and wasn’t invented until ten years later.

Weaver: [Laughs.] Okay.

Robertson: How do you actually load the program physically into the machine?

Russell: Oh, it’s on a piece of paper tape. Built into the machine is what’s called read-in

mode. Read-in mode reads characters from the paper tape and interprets them

as variously alternating instructions and data. As long as the instructions are

deposited into the I/O register, it keeps reading paper tape. When the

instruction turns out to be a jump, it gets out of read-in mode and transfers to

that location. That’s the basic hardware. This was a convention that was

established long before the PDP-1. You write a small loader which goes on the

front of the paper tape or the first few cards of the card deck. That program

typically checksums itself to make sure it got loaded right, and then starts reading

in blocks, which give a loading address, a pile of data, and a checksum at the

end. There’s also one that says, “Start the program here.” By the time you finish

reading in the paper tape, you know you have a good copy of the program in

memory and it’s ready to go. It looks neat because the paper tape reader is

fanfold, and so it’s flapping.

Weaver: Give us a few stats. For instance, how much money was a 704? This is the 1950s.

Russell: I don’t remember. Millions.

40

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: But it was far in excess of millions.

Russell: Yeah.

Weaver: Yeah. In 1960s money, how much was a PDP-1?

Russell: A hundred and twenty thousand dollars with a display.

Weaver: So, it was cheap.

Russell: Yes. It’s DEC. [Laughs.]

Weaver: Of course. It’s DEC. Why did they call it a PDP and not a computer?

Russell: Ah! When Harlan Anderson and Ken Olsen were shopping around the idea of

building transistor modules similar to what they had done with TX-2, they went

to the only venture capitalist around in Boston at the time, General Doriot.

Suggested that they start this company and call it the Digital Computer

Corporation, because they knew they wanted to do that eventually. And they

said, “No, do not mention computers. Everybody in finance knows that nobody

except IBM has ever made any money with computers, so don’t mention

computers. It will scare off investors and, incidentally, give IBM a target.” So,

okay, Digital Equipment Corporation.

Things go along and the module business turns out to be very good for them.

They’re high-margin and they’re attractive and they sell nicely. They have a

cookbook which allows you to build high-speed logic without having to do any

circuit design and without having to know much about electronics. Real good

business. They start building some core testing machines for some of their

customers. This is a few extra pieces of electronics and you can plug in a new

stack of core memory and test it. You have confidence that it’s all working, and

it doesn’t take very long.

It’s kind of a mystery exactly how Digital decided it was time to build a computer,

but they decided it’s time. They set an engineer to designing a computer. Well,

what does a computer look like? It looks like what they’re used to. It’s a cost-

reduced version of Whirlwind. It’s much, much cheaper because it’s using

transistors and it’s eight or ten years later. At any rate, so they build the

computer. Well, what are they going to call it? Well, they’re not going to call it

a computer because that’s the kiss of death, sort of, so they decide to call it a

Programmed Data Processor. Now, this is good enough to fool purchasing.

“Okay, we don’t have to refer it to the Computer Selection Committee. It’s an

41

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

expensive piece of laboratory equipment, and they think they need it.” So, they

call it a Programmed Data Processor.

Now, anyone who knows anything about computers looks at it and says, “Oh,

that’s a cheap computer.” And some people say, “I can afford one of those, but

I can’t afford a big IBM system,” or, “I want a special instruction and a special

bubble chamber picture reader,” or something to attach to it. That’s appalling to

do with an IBM system. Digital is quite happy to design a special instruction for

me and quite happy to let me hook whatever I damn please onto it.

Furthermore, it’s easy.

That’s what they introduce in December of 1959. A small number of people,

but enough, look at it and say, “Hey, yeah, that is a good deal. I could use that.”

They get a satisfying number of orders and they decide to donate serial number

5 to MIT. Now, it turns out this is a good deal for them. Any interesting

programs that MIT writes, because they’re exposing it to MIT grad students and

undergraduates. They get MIT turning out a crop of graduates who already know

about PDP-1s and would probably buy more—and they did—and they can write

it off their income tax.

Now, forty years later, we discover, or we were told, that it turned out they wrote

off the list price. The list price was $120,000 off their profit and they paid

$50,000 less on income tax and it cost them $40,000 to build. They were still

ahead $10,000. Not like they had sold it at full list, but still not a bad deal. And

the IRS sort of figured this out eventually and changed the rules the next year,

so that was the last time they got to do that.

[So, what kind of computer is the PDP-1 comparable to?] It looks like

Whirlwind. There’s an improvement. People have figured out indirect

addressing and talked about it since then, so they add indirect addressing. They

notice that they can save a register something like six flip-flops by not having a

shift counter and changing the closed subroutine calls. They give you multiply

step and divide step, and you have to do them eighteen times to get a full multiply

or divide done. And instead of having a register that holds the place you came

from after every transfer of control, they have close subroutine calls that simply

store the old program counter in the accumulator. The rest of it is basically like

Whirlwind. You can look through and compare the order codes and see that

Whirlwind was a little more numerical oriented, because they knew they were

doing coordinate transformations. The PDP-1 is a little cheaper because it has

fewer registers.

42

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: As best you can recollect, what was the purpose of DEC building the PDP-1?

What was its intended utilization?

Russell: I’m not qualified to say. Try Ken Olsen’s oral history and Harlan Anderson’s

book.

Weaver: In your experience, we already know that PDP-1s early on were basically

primarily university.

Russell: A lot of people doing research stuff and a lot of the early research was on

graphics. The conclusion of the early PDP-1 research on graphics was we

needed a faster computer, a faster display, and bigger memory, and further study

is indicated.

Weaver: Very good. Steve, did you ever design a board game?

Russell: Not singlehandedly. Shag and Wayne and I periodically worked on a game that

we called Graft, which was based on Monopoly. Instead of properties, you had

figures in the news, like being the mayor’s cousin who got a lot of graft. It was

intended as a game, but part of the entertainment was that the stories that came

out of it were very much like what was getting reporting in Boston politics, which

at the time had some graft exposed.

Weaver: In other words, colorful characters.

Russell: Colorful characters doing things that weren’t necessarily legal.

Weaver: I don’t think anything’s changed, even till today.

Russell: [Laughs.] Well, there’s always the strange climate in Massachusetts, which you

notice when you cross into New Hampshire. The Massachusetts climate is very

hard on the roads and the roads tend to fall apart a lot, but as soon as you get

into New Hampshire, the different climate makes the roads much smoother.

Weaver: Very interesting. [Laughs.] Are you familiar with a game called D&D, Dungeons

& Dragons?

Russell: Yes. I played it for several years when I was working for Digital Equipment, and

it was a great deal of fun, because two of the people in the group were would-be

authors. They were very good at dreaming up things to do. Some of the other

players were colorful characters, too, so it was fun. There it’s sort of a merge

between gameplay and table talk. A lot of the stuff you talk about is related to

43

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

playing the game right now, but there’s a certain amount of side remarks about

the individuals rather than the characters.

Weaver: When Wayne left for military service, did you and Shag end up as roommates?

Russell: Yeah. Well, the three of us had rented 8 Hingham Street, and when Wayne

went off for military service, it was only for six months. He was in the Army

Reserve and they had six months of active duty, so he was going to come back

fairly soon.

Weaver: Okay. But you stayed in close proximity?

Russell: Oh, yeah.

Weaver: Yeah. Okay. You spoke about the idea of altering physics in a game, so would

you like to talk a little bit about the Bergenholm space drive?

Russell: No, that was Doc Smith’s department. Other than the idea of hyperspace, which

wasn’t peculiar to Doc Smith—it was pretty common in science fiction at the

time—I don’t claim that it’s anything very specific. It’s mostly the name and its

use in the game, which is not in the classical tales, exactly.

Weaver: I thought that when you were talking about it before in terms of altering physics,

I instantly thought of the Bergenholm drive, of course, which did a good job of

that.

Russell: There was a long tradition of altering physics to make the plot work, including

the transporter, you know.

Weaver: I get it. All right. Let’s go back to MIT for a minute. I want to just put a few

things—get a few answers on the record. Were you involved in TMRC hacking

on the TX-0?

Russell: No. Well, I didn’t do anything. I would periodically be an admiring audience.

Weaver: Got it. Okay.

Russell: The TX-0 was really very influential because they inherited from the Lincoln

Labs people a bunch of applications. A bunch of sort of seeds of applications,

like the type justifier, which would do word breaks, that sort of stuff, and the text

editing and the debugging tools. All those, again, most of those had showed up

44

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

in some form at Lincoln Labs, but needed some work to translate to the MIT

installation, which had less memory and very quickly grew extra instructions.

Weaver: Understood. When you were at Harvard, were you still part of the MIT hacking

scene?

Russell: Oh, sure.

Weaver: And when you were employed by Harvard, were you programming Spacewar!

at MIT?

Russell: I was working on it. Spacewar! was always a spare-time project.

Weaver: Right. No, no. What I was asking is was it a project both when you were at MIT

and also when you went to Littauer? [That you] just kept working on it?

Russell: At MIT, management sort of knew what I was doing; at Harvard, they didn’t.

Weaver: Got it. Okay. Did you have any formal process for programming Spacewar!?

Russell: Well, sort of. One of the things that I did for LISP, I had an algebraic

specification, which was John’s universal m-expression. In the case of Spacewar!,

I wrote the physics part in imitation—before I coded it, I wrote it in imitation

Fortran. It was a very loose version of Fortran that suited me, and it allowed me

to look at the formulas and do some simplification that was based on the

formulas rather than having to write all the code and then figuring out some of

it was redundant.

Weaver: Trying to put it within the construct of what followed in terms of more

methodological rigorous approaches as computer science sort of developed,

would you say that it was a waterfall-type development? Was it more of just an

iterative development system? It certainly wasn’t agile, right?

Russell: I don’t know if I could fit it easily into any of the formal systems. I had brief

exposure to a relatively rigorous machine language development system. When

I was working for the Artificial Intelligence project, I took a spare-time job

working for Dick Bennett , who had contracted to do some things with the

709.What I ended up with was a program that managed to keep the tape drives

running full-time on the 709, which was a bit of an achievement. That was all

done with machine language macros, and he had a very structured way of writing

things, which I put up with but didn’t really like. And I’ve noticed that a lot of

45

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

people have methodologies which will solve all problems, and I’ve never met

one that seemed to work for all the problems I knew about.

Weaver: Okay. I have a list of people who were mentioned regarding some contribution

to Spacewar!, and I’d like to read the names that I have, and if you don’t mind,

just give me a quick piece or portion of a sentence of what that person

contributed so that I have it for the record. And if I’m missing anybody, please

feel free to add anybody I’m missing. The first person on my list is yours truly,

Steve Russell.

Russell: Okay. Yes, indeed, I worked on Spacewar!.

Weaver: From a high-level standpoint, if you were going to try and describe what your

contribution was, how would you describe yourself in terms of the product?

Russell: Project manager. I wrote some of the initial code and I kept what I considered

to be a good copy, and as other people got things, I added those things, and so

I had a version that I thought was better than any of the individual versions.

Weaver: So, were you also the keeper of the gate? When people wanted to add things, it

was something where they either gave it to you or it went through you so there

was some sort of a methodologic—

Russell: No. I gave the source files for the current version to anyone who asked, so they

didn’t have to return anything to me.

Weaver: What about the group that was immediately around you? In other words, you

mentioned that—and I’m going to get to him, but you mentioned that Peter

Samson, for instance, you believed, had put in his own magnitude-reduced star

field. Was that something that you had both discussed or was it just something

that he did willy-nilly?

Russell: I don’t know as we discussed it before the fact, but he certainly did the tinkering

to make it work. He had to make it different for being in—as part of Spacewar!

rather than a standalone program.

Weaver: Right. But he did that even though you were program manager. You didn’t

necessarily oversee it?

Russell: Oh, no.

Weaver: Fine. Okay.

46

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: As project manager, about all I did was talk about the project and try to keep

track of what interesting things were getting worked on.

Weaver: Got it. What did Wayne Wiitanen do?

Russell: He didn’t contribute any actual code, but he was part of the original Hingham

Institute discussions. There was a great deal of discussion before I started

working on the prototype, and so we had a pretty clear idea of the basics. Then

I was shamed into writing the prototype, and at that point, there were all sorts of

suggestions pouring in from everywhere. But Wayne and Shag and I were

definitely in serious discussion at great length.

Weaver: Got it. All right. So, speaking of Shag, so what did Martin “Shag” Graetz do on

the project?

Russell: Well, my remembrance is that he was relatively sort of the advocate of the

teaching part. We all bought into the idea fairly quickly, but he was the advocate

of the teaching part. He made the explosions look much better. Getting the

explosions to look right was a sort of continuing effort. A compromise between

appearance and keeping the display and that sort of stuff. He was also one of the

chief promoters after it was working. He wrote the article for Decuscope and

gave a talk at the DEC Users’ Meeting.

Weaver: What did Dan Edwards do?

Russell: Gravity—well, not gravity. Made the time for the gravity calculation. He may also

have done most of the gravity calculation. I know I had my finger in it a little,

but the main thing was the run-time compiler trick, which, as far as we know,

that was the first time it was done. You must understand that a lot of these things

which have turned out to be serious concepts of computer science at the time

were viewed more as despicable programming tricks. Despicable in the sense

that they were hard to understand, and they were outside of the mainstream

programming practice. They were tricks and they managed to make the program

work. In the culture, getting the program to work was a good thing, even though

you didn’t do it entirely in the generally accepted practice or make it completely

transparent.

Weaver: And what about Peter Samson?

Russell: Well, he built the standalone star chart, Expensive Planetarium, and he made it

work. I think he later on, after I left, did the scorekeeping, some of the

scorekeeping, anyway, and that’s a little obscure.

47

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Weaver: Bob Saunders?

Russell: He may have tinkered some of the stuff, but I don’t think he did much. He

helped me test the final version. We spent many hours playing each other and

considering whether something needed to be tinkered. There was sort of a

history of tinkering. What happened was as soon as the prototype was going,

there were lots of suggestions about, “Make it faster,” “Make it slower,” “Change

the rockets,” “Give them more torpedoes,” things like that. When we were

making the final version, we had these various tuning things, and Bob and I

ended up playing each other a lot and doing the tuning to our satisfaction.

Because there were all these suggestions about tinkering the parameters, as part

of the final version, I gathered together all the parameters and put them in the

first page of the program. Anyone with the first page of the program could figure

out how to adjust the parameters to their satisfaction. Apparently hardly anyone

did. [Laughs.]

Weaver: Today if you probably have been following the industry, we call that play

balancing.

Russell: Yes.

Weaver: That’s what you were doing.

Russell: We were conscious that we were balancing things, but we were balancing it to

our satisfaction. The play testing was just us two.

Weaver: Did Bob Saunders also have a hand—no pun intended—in constructing the

controllers, the separate controllers?

Russell: He may have. I don’t remember. He subsequently wrote a version for, I think,

PDP-9. I think, either the 7 or the 9.

Weaver: And what about Alan Kotok, [pronounce] “Kah-tok”?

Russell: [pronounce] “Koh-tok.” He was certainly one of the kibitzers. He was also

responsible for provoking me into actually writing the prototype by presenting

me publicly with the sine and cosine routines and saying, “Now what’s your

excuse?” I was embarrassed, a little, and wrote the prototype. But he was

certainly one of the serious commentators and observers.

Weaver: Do you remember if Alan and Bob actually were the two who scrounged parts

at TMRC to build those controllers?

48

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Well, where else would you scrounge parts? [Laughter.]

Weaver: Okay.

Russell: Remember TMRC had accumulated obsolete telephone components for years

and years because a lot of the projects of the railroad used those components,

and so there was an ample supply of those things hiding under the layout.

Weaver: And what about Steve Piner?

Russell: I don’t remember that he had his thumb in the code particularly, but he wrote

Expensive Typewriter, which was one of the tools that we used and cursed at. It

was, it turns out, one of many editors which dealt with character codes with

explicit case shifts. It turned out there was a really rich bug mine there because

when you backspaced, it was supposed to do the right thing. But when you

backspaced over a case shift, it was hard to do the right thing in all cases because

you had to know what case the device was in. You had to know what case the

device had been before the character that got erased by the backspace. You had

to get everything right. It turned out that very few people chased out all of the

bugs associated with that problem. Certainly, Expensive Typewriter was

infamous for having that problem.

Weaver: Are there any others that you remember I’ve not mentioned?

Russell: Not offhand, but remember this was an open-source project. Furthermore, it

was tinkered with after I left for Stanford, so there’s lots of things that people did

to it that I wasn’t aware of.

Weaver: So that would account for things like the additional features and also some

subtracted features as well?

Russell: Yes, and also different tuning.

Weaver: How was Spacewar! development impacted by your own call-up to active duty?

Russell: Well, I didn’t do it for six months. I think that Dan Edwards did most of the

display improvements while I was on active duty, but I don’t remember for sure.

Weaver: If scholars of the future wanted to uncover the various influences that went into

creating Spacewar!, what would be the key areas or elements that they should

research?

49

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Russell: Well, they haven’t asked me any questions yet. [Laughter.] Well, certainly the

Lensman series.

Weaver: The political times? The Cold War?

Russell: Well, there was certainly the news because of the space race, and that provided

“Here’s this computer. Can we do anything with it?”

 “Well, the Minskytron is kind of boring after a while.”
10

 Then it was, “Oh, look. Here’s spaceships. Nobody knows how to fly—most

people don’t realize about momentum and how you have to control a spaceship.

Well, that’s simple. The physics is very straightforward. Can we make that

work?” And the answer turned out to be yes.

Weaver: Would it be fair to say that from the times, you were less interested in the Cold

War part and more interested in the space part?

Russell: Yes.

Weaver: And then other than the Lensman series, were you reading things like Disney’s

Man in Space?

Russell: Yeah. And I believe I was getting science fiction magazines every month, so I

had plenty of experience—I certainly had no problem understanding what

hyperspace meant.

Weaver: Let’s go to Stanford for just a moment. Was play of Spacewar! restricted at SAIL

to off hours?
11

Russell: Well, SAIL didn’t exist, as such, when we were working on the PDP-1

timesharing system, so it was the AI project of the time. With the first machine,

which didn’t have a working timesharing system, it was essentially the same rules

as MIT; that is, playing Spacewar!’s absolutely the lowest priority and debugging

Spacewar! is one step above that. If anybody had anything serious to do—and I

had a lot of serious stuff to do with the timesharing system—that was more

important. Once we got the timesharing hardware and a timesharing system

going, then if it was outside normal hours and you could manage to chase

10

 The Minskytron was a computer graphics only display demo for the PDP-1.
11

 Stanford Artificial Intelligence Laboratory

50

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

everyone else off the system and you knew how to load Spacewar!, then you

could do it, but that made it much more restrictive.

Weaver: What was Spacewar! mode, and who programmed it?

Russell: I didn’t program it, and I don’t remember which system—I think that was more

a PDP-6 thing that was done after I left.

Weaver: You mean for timeshare?

Russell: Yeah. The idea was that Spacewar! needed a consistent time slot, but on the

PDP-6 it didn’t need the whole machine like it did on the PDP-1. The idea was

that you would give one user, one of the many timeshared users, a regular time

slot and a restriction so they only got their allocation, but that happened regularly

with the clock. You could keep a more or less consistent display going. And it

turned out that Spacewar! mode had lots of other applications.

Weaver: Such as?

Russell: You have a piece of hardware like an arm or a camera looking at a scene, and

especially when you’re trying to debug the hardware, getting uniform access gave

you the possibility of getting a consistent scope trace. For debugging the

hardware and running the software, it was very useful to have a consistent time

slot.

Weaver: Did the cult success of Spacewar! surprise you?

Russell: Not especially, because it gradually grew up over the years. Around MIT, there

was this group of Spacewar! players that existed that I periodically had to shoo

off because I wanted to make a better version, and so there had been some of

that. Then I didn’t pay any attention to it over the years, and I got interested

again when personal computers were around, and you could play games on

them, but it was a very gradual thing.

Weaver: Where do you place Spacewar! in human-computer interaction?

Russell: Well, I guess you could say the bouncing ball program on Whirlwind could be

manually tinkered so that the ball got pushed with different vigor. The

Minskytron was similar in the sense that it was a display where you set the

parameters and then started it and it did what it did. I think Spacewar! was the

first thing of any distribution that actually had interaction in the sense of you see

something on the screen, you do something to change it, it changes, and you

51

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

decide what to do next and tell it to do it and it responds. The crucial point there

was that the response time was comparable to human response time rather than

once every few minutes.

Weaver: [Recording equipment error and pause.] Yeah. Sometimes this stuff is beyond

understanding.

Russell: Yes. Well, I always have fun with the kids these days. Nowadays most of them

have never had the hardware routinely crash out from under them. Back in the

vacuum tube days, that was a weekly occurrence, and with the early tape drives

and disk files, it was embarrassingly common. Then I started working where I

was dealing with new hardware, and let me tell you, when the hardware passes

the smoke test, it ain’t crash-proof. [Laughter]

Weaver: How did Spacewar! sensitize you to the importance of testing?

Russell: Not that much, because several years before, I did the first LISP interpreter, and

that had its own set of bugs. I rewrote it, which had a different set of bugs. Then

we attempted to debug the garbage collector. Now, the garbage collector is more

or less—now is a very standard sort of thing. It was a crucial part of LISP because

the idea was you didn’t have to think about storage management. You’d just treat

storage as though it was infinite. Because we were clever in writing the

programming conventions, we had handles that pointed to all the list structure

that mattered. If you couldn’t get it through those handles, then it was obviously

surplus, and you could reuse it. Now, it’s a very simple idea. The keeping track

of all the handles turned out to take I would say at least a year and a half, if not

longer, to debug. The symptom was everything would be fine for a while and

then all of a sudden some of the list structure would get garbaged. Typically, the

way it got garbaged was it got connected to the very long list of free storage when

it shouldn’t have been.

Because the garbage collection was asynchronous to what the program was

doing, it was just you do things and then you run out of storage, you call the

garbage collector, wait a while, you get storage back and you go on for a while.

Because of that, it was relatively hard to reproduce problems. You’d find a

problem or you’d get an idea of what it was by the circumstances, but you

typically couldn’t exactly reproduce it right there and then. You’d have to either

speculate on the problem and fix what you thought the problem might have been

or you’d read the code in a highly motivated fashion and find some other stupid

mistakes, which happened not to be the one that was causing the problem at

hand but was definitely a stupid mistake.

52

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

Partly because the 704 or 709 debugging was a one-experiment-per-day, maybe,

sort of thing, that dragged on for a long time. We were doing a great deal of just

trying to get the garbage collector to collect exactly what it was supposed to and

nothing else. The problem was in either case, if it was collecting too much, that

was sort of obvious, although the fix wasn’t, and the detailed circumstances might

not be. If it was collecting more than it needed to, that was even worse because

what you’d discover is you ran completely out of free storage sooner than you

expected. But typically, the programs that were running, like Jim Slagle’s

symbolic integration program, were things where once it was working on simple

examples, you tried more complicated examples. It turned out that a limitation

on the complicated examples was the total amount of free storage available. If

that happened sooner than you expected, then there was the question of are you

sure you don’t have a bug lurking in there. Figuring that out was a bit

complicated.

Weaver: And what about the importance of user interface?

Russell: Well, a crucial part of making the prototype work was noticing that you didn’t

need much control. In fact, I’m sure that we figured this out in the preliminary

discussions. You didn’t need much in the way of controls, and four bits of user

input was just fine.

Weaver: Did you end up modifying the interface over time or did you find that your

original concept worked pretty well from the start?

Russell: It worked pretty well from the start. The modification was deciding that if you

said turn left and turn right both at the same time, that meant you wanted to go

into hyperspace. When you’re playing from the switches, that’s the way you get

into hyperspace. When you wire up a control box, you can typically arrange it

so that’s done with a couple of diodes in the control box and you can give a

separate hyperspace button, even though you still are only using four bits of

input.

Weaver: Got it. Have I missed anything that was on your list that was important?

Russell: No, I don’t think so.

Weaver: Well, so just before we finish, what is it that you would like to tell young

programmers who will be looking at the archive now and in the future and the

website of the Smithsonian? You’ve had a lot of years now suffering at the hands

of computers, hardware, and engineers. So, looking back, sort of summing it up,

53

For additional information, contact the Archives Center at 202-633-3270 or archivescenter@si.edu

what pithy statements would you give aspiring young programmers who are

looking at your speaking to them?

Russell: Well, don’t be afraid to try something. Pick up something you’ve coded a year

or two earlier—anyway, let something sit for at least a year and then pick it up

and look at it and see if you understand it. If you don’t, think about what kind

of comments to add would have helped you in understanding it.

Also, pay attention to keeping things as simple as possible, except when you

really, really need something that’s hard. I personally have found that it’s much

easier to train myself to write straightforward, simple code and have it work as

intended than it is to do something quick and dirty which doesn’t take into

account all of the funny things that would happen. I have spent years of my

professional life cleaning up sloppy code that other people got almost working—

well, got working enough to pass the demo, but not to survive real users.

Weaver: Excellent. Thank you. Appreciate it.

 [End of interview.]

